The speed of the pin after the elastic collision is 9 m/s east.
<h3>
Final speed of the pin</h3>
The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;
m1u1 + mu2 = m1v1 + m2v2
where;
- m is the mass of the objects
- u is the initial speed of the objects
- v is the final speed of the objects
4(1.4) + 0.4(0) = 4(0.5) + 0.4v2
5.6 = 2 + 0.4v2
5.6 - 2 = 0.4v2
3.6 = 0.4v2
v2 = 3.6/0.4
v2 = 9 m/s
Thus, The speed of the pin after the elastic collision is 9 m/s east.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
Answer:
A. The model was the result of hundreds of years of experiments.
Explanation:
Since it is not possible to visualize an atom in isolation, scientists have spent hundreds of years experimenting and creating atomic models, that is, images that serve to explain the constitution, properties and behavior of atoms.
The earliest who imagined the existence of the atoms were the Greek philosophers Leucippus and Democritus in about 450 BCE. According to them, everything would be formed by tiny indivisible particles. Hence the origin of the name "atom", which comes from the Greek a (no) and tome (parts).
But in the nineteenth century, some scientists began to conduct experimental tests increasingly accurate thanks to technological advances. Not only was it discovered that everything was actually made up of tiny particles, but it was also possible to understand more and more about the atomic structure.
Scientists used the information discovered by other scholars to develop the atomic model. In this way, the discoveries of one scientist were replaced by those of others. The concepts that were correct remained, but those that proved to be non-real were now abandoned. Thus, new atomic models were created. This series of discoveries of the atomic structure until arriving at the accepted models today was known like the evolution of the atomic model.
Answer:
Gravity
Explanation:
Gravity is the force that causes a "disturbance" in space between planets.
Answer:
The answer is a wedge.
Explanation:
The wedge is a combination of two inclined planes. It is used to separate bodies which are held together by large forces, e.g, splitting timber
M.A.= slant height of wedge/thickness of wedge.
Hence a long thin wedge has a higher mechanical advantage than a short thick one; or the smaller the angle theta between the slant heights, the greater the mechanical advantage.