The correct answer is - CaCl2
The calcium chloride is a salt, an inorganic compound. Its formula is CaCl2, with Ca being calcium, Cl being chloride, and the number 2 representing the number of chloride molecules.
The calcium chloride is a white colored crystalline solid when it is at room temperature, and it is highly soluble in water, acetone, and acetic acid. It has a molar mass of 110.98 g/mol, density of 2.15 g/cm³, and melting point at 772 °C.
The AREA of the shaded region is the moving object's displacement.
Answer: The coefficient of kinetic friction is μ = 0.6
Explanation:
For an object of mass M, the weight is:
W = M*g
where g is the gravitational acceleration: g = 9.8m/s^2
And the friction force between this object and the surface can be written as:
F = W*μ
where μ is the coefficient of friction (kinetic if the object is moving, and static if the object is not moving, usually the static coefficient is larger)
In this case, the weight is:
W = 20N
And the friction force is:
F = 12N
Replacing these values in the equation for the friction force we get:
12N = 20N*μ
(12N/20N) = μ = 0.6
The coefficient of kinetic friction is μ = 0.6
Kinetic energy is the energy for a catapult.
Answer:
The load that can be lifted is equal to the weight W = F2A1/A2
Explanation:
According to Pascal principle which states that the pressure applied to a liquid confined in a container will be transmitted equally to all other parts of the container.
Since pressure = Force/Area
The force F2 applied at one end of the piston will generate a pressure of F2/A2. This pressure generated will be transmitted to the other end of the piston of area A1 to lift the load through a distance.
The piston where the load is will experience an upward force F1 which is equal to Pressure × Area.
The pressure experienced by the load is applied by force F2.
Force on the load = (Pressure exerted by Force F2) × Area at the larger end A1
Force on the load = F2/A2 × A1
Since the load experiences a weight W
The weight will be equal to the force on the load which is to be lifted i.e W =Force on the load.
W = F2A1/A2
The load that can be lifted is equal to the weight W = F2A1/A2