The question is oversimplified, and pretty sloppy.
Relative to the Earth . . .
The Moon is in an elliptical orbit around us, with a period of
27.32... days, and with the Earth at one focus of the ellipse.
Relative to the Sun . . .
The Moon is in an elliptical orbit around the Sun, with a period
of 365.24... days, and with the Sun at one focus of the ellipse,
and the Moon itself makes little dimples or squiggles in its orbit
on account of the gravitational influence of the nearby Earth.
I'm sorry if that seems complicated. You know that motion is
always relative to something, and the solar system is not simple.
Below is an attachment containing the solution.
Answer:
a)
b)S= 46.4 cm
Explanation:
Given that
Velocity = 16 Km/s
V= 16,000 m/s
E= 27 mV/m
E=0.027 V/m
d= 22.5 cm
d= 0.225 m
a)
lets time taken by electron is t
d = V x t
0.225 = 16,000 t

b)
We know that
F = m a = E q ------------1
Mass of electron ,m

Charge on electron

So now by putting the values in equation 1




Here initial velocity u= 0 m/s

S=0.464 m
S= 46.4 cm
S is the deflection of electron.
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut