Answer: a) E= 6.63x10^-19J
E= 3.97×10^2KJ/mol
b) E = 3.31×10^-19J
E= 18.8×10^4 KJ/mol
C) E = 1.32×10^-33J
E= 8.01×10^-10KJ/mol
Explanation:
a) E = h ×f
h= planks constant= 6.626×10^-34
E=(6.626×10^-34)×(1.0×10^15)
E=6.63×10^-19J
1mole =6.02×10^23
E=( 6.63×10^-19)×(6.02×10^23)
E=3.97×10^2KJ/mol
b) E =(6.626×10^-34)/(1.0×10^15)
E=3.13×10^-19J
E= 3.13×10^-19) ×(6.02×10^23)
E= 18.8×10^3KJ/MOL
c) E= (6.626×10^-34) /0.5
E= 1.33×10^-33J
E= (1.33×10^-33) ×(6.02×10^23)
E= 8.01×10^-10KJ/mol
Answers is F=7.84 N
Friction force resists the effect of horizontal force and trying to approch to a limiting force.
we have formula for limiting friction force between block and floor
F=Ц N
where N=mg
putting values we get answer.
<h3><u>Answer;</u></h3>
1 × 10^-8 M
<h3><u>Explanation</u>;</h3>
pH is given by the -log[H+] while
pOH is given by the -log[OH-]
But;
pH + pOH = 14
Thus; if pH is 6, then pOH = 8
pOH = 8
-log[OH-] = 8
[OH-] = 10^-8 M
The concentration of OH- ions at a pH of 6 is 1 × 10^-8 M
Answer:8 m/s
Explanation:
Given


kinetic Energy of 
initially
is at rest and let say
is moving with velocity u
kinetic Energy of 


In Completely inelastic collision both mass stick together and move with common velocity
Suppose v is the common velocity


therefore Final velocity with which both blocks moves is 1 m/s
Answer:

Explanation:
A function f(x) is a Probability Density Function if it satisfies the following conditions:

Given the function:

(1)p(x) is greater than zero since the range of exponents of the Euler's number will lie in 
(2)
![\int_{0}^{\infty} p(x)=\int_{0}^{\infty} \dfrac{1}{r}e^{-x/r}\\=\dfrac{1}{r} \int_{0}^{\infty} e^{-x/r}\\=-\dfrac{r}{r}\left[e^{-x/r}\right]_{0}^{\infty}\\=-\left[e^{-\infty/r}-e^{-0/r}\right]\\=-e^{-\infty}+e^{-0}\\SInce \: e^{-\infty} \rightarrow 0\\e^{-0}=1\\\int_{0}^{\infty} p(x)=1](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20p%28x%29%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20%5Cdfrac%7B1%7D%7Br%7De%5E%7B-x%2Fr%7D%5C%5C%3D%5Cdfrac%7B1%7D%7Br%7D%20%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20e%5E%7B-x%2Fr%7D%5C%5C%3D-%5Cdfrac%7Br%7D%7Br%7D%5Cleft%5Be%5E%7B-x%2Fr%7D%5Cright%5D_%7B0%7D%5E%7B%5Cinfty%7D%5C%5C%3D-%5Cleft%5Be%5E%7B-%5Cinfty%2Fr%7D-e%5E%7B-0%2Fr%7D%5Cright%5D%5C%5C%3D-e%5E%7B-%5Cinfty%7D%2Be%5E%7B-0%7D%5C%5CSInce%20%5C%3A%20e%5E%7B-%5Cinfty%7D%20%5Crightarrow%200%5C%5Ce%5E%7B-0%7D%3D1%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20p%28x%29%3D1)
The function p(x) satisfies the conditions for a probability density function.