Answer :
(a) The energy of blue light (in eV) is 2.77 eV
(b) The wavelength of blue light is 
Explanation:
The relation between the energy and frequency is:

where,
h = Plank's constant = 
Given :
Frequency = 
Conversion used :

So,


Also,

So,


The energy of blue light (in eV) is 2.77 eV
The relation between frequency and wavelength is shown below as:

Where,
c = the speed of light = 
Frequency = 
So, Wavelength is:


Conversion used : 
The wavelength of blue light is 
100 m = 0.1 km
9.58 sec = 9.58/3600 = 0.00266 hr
Speed = 0.1/0.00266= 37.6 km/hr
Can you mark it brainliest?
94.6 g. You must use 94.6 g of 92.5 % H_2SO_4 to make 250 g of 35.0 % H_2SO_4.
We can use a version of the <em>dilution formula</em>
<em>m</em>_1<em>C</em>_1 = <em>m</em>_2<em>C</em>_2
where
<em>m</em> represents the mass and
<em>C</em> represents the percent concentrations
We can rearrange the formula to get
<em>m</em>_2= <em>m</em>_1 × (<em>C</em>_1/<em>C</em>_2)
<em>m</em>_1 = 250 g; <em>C</em>_1 = 35.0 %
<em>m</em>_2 = ?; _____<em>C</em>_2 = 92.5 %
∴ <em>m</em>_2 = 250 g × (35.0 %/92.5 %) = 94.6 g
1mol=6.022x10^23 atoms
3.75mol= 6.022x3.75x10^23 atoms
=2.2583x10^24 atoms
d. exothermic; leaving
- Exothermic reaction is a reaction that produces heat in the reaction whereas the endothermic reaction is a reaction in which heat is required to be given in the reaction to produce product.
- Fire is an exothermic reaction.
- A fire is produced due to oxidation of the fuel in the form of liquid or gas.
- A fire is an example of combustion.
- In fire both heat and light are left from fire due to the oxidation of fuel.
Hence, option d. exothermic; leaving is the correct option.
Learn more about fire:
brainly.com/question/12761984