Answer:
A. P₂ / P₁ = 2
B. P₂ / P₁ = 1.1
Explanation:
A. Determination of the ratio P₂/P₁
Volume = constant
Initial temperature (T₁) = 46 K
Final temperature (T₂) = 92 K
Final pressure /Initial pressure (P₂/P₁) =?
P₁/T₁ = P₂/T₂
P₁/46 = P₂/92
Cross multiply
46 × P₂ = P₁ × 92
Divide both side by P₁
46 × P₂ / P₁ = 92
Divide both side by 46
P₂ / P₁ = 92 / 46
P₂ / P₁ = 2
B. Determination of the ratio P₂/P₁
Volume = constant
Initial temperature (T₁) = 35.4 °C = 35.4 + 273 = 308.4 K
Final temperature (T₂) = 69.0 °C = 69 + 273 = 342 K
Final pressure /Initial pressure (P₂/P₁) =?
P₁/T₁ = P₂/T₂
P₁/308.4 = P₂/342
Cross multiply
308.4 × P₂ = P₁ × 342
Divide both side by P₁
308.4 × P₂ / P₁ = 342
Divide both side by 308.4
P₂ / P₁ = 342 / 308.4
P₂ / P₁ = 1.1
Answer:
NaOH(aq)
Explanation:
NaOH(aq) is known to precipitate Mn^2+ ions according to the following reaction; Mn^2+(aq)+2OH^−(aq)↽−−⇀Mn(OH)2(s)
Hence, manganese(II) oxide reacts more readily with NaOH(aq) under ordinary conditions precipitating the metal hydroxide solid. This is one of the characteristic reactions of Mn^2+.
Answer:
We can solve this by the method of which i solved your one question earlier
so again here molar mass of C12H25NaSO4 is 288.372 and number of moles for 11900 gm of C12H25NaSO4 will be = 11900/288.372
which is almost = 41.26 moles
so to get one mole of C12H25NaSO4 we need one mole of C12H26O
so for 41.26 moles of C12H25NaSO4 it will require 41 26 moles of C12H26O
so the mass of C12H26O = 41.26× its molar mass
C12H26O = 41.26×186.34
= 7688.38 gm!!
so the conclusion is If you need 11900 g of C12H25NaSO4 (Sodium Lauryl Sulfate) you need C12H26O 7688.38 gm !!
Again i d k wether it's right or wrong but i tried my best hope it helped you!!