Answer: b. Acetyl Co-A
Explanation:
Acetyl CoA produced through pyruvate, amino acids, and fatty acids are oxidized in the Krebs cycle in CO2, obtaining as products NADH, FADH2 and GTP (ATP). Parallel to this oxidation, the Krebs cycle produces compounds used as precursors for biosynthesis. As it is a cycle, an oxaloacetate molecule could, in principle, oxidize an amount indefinite of acetyl CoA. Acetyl-CoA is formed from the oxidative decarboxylation of pyruvate, sequentially performed by pyruvate dehydrogenase -PDH (complex multi enzymatic of 3 enzymes), in the mitochondrial matrix.
Answer:
Biodiversity is the amount of variety of life on Earth.
Explanation:
Biodiversity boosts ecosystem productivity where each species, no matter how small, it has an important role to play.
<u>For example,</u>
a larger number of plant species means a greater variety of crops. Greater species diversity ensures natural sustainability for all forms of life.
Answer:
I do Agree with your statement of growing populations, but I am not sure what else you want me to say.
Answer:
B
Explanation:
organ system is two or more organs working together to perform a specialized function.
The level of the structure is the proteins in the secondary.
<h3>What is the structure of secondary?</h3>
- A polypeptide chain's adjacent amino acid residues are arranged in regular patterns in space, known as secondary structure. It is kept in place by hydrogen bonds between the amide hydrogens and the peptide backbone's carbonyl oxygens. Helixes and structures are the two main secondary structures.
- Local regions of proteins can be organized into one of three three-dimensional configurations: alpha helices (-helix), beta sheets (-strand), or omega loops. The alpha helix is the most prevalent secondary protein shape because it is stable and low-energy.
- The interaction of amino acids with every backbone NH hydrogen bound with the backbone C=O group of the corresponding amino acid residue in the polypeptide chain results in the- helix formation. The- helix motif is particularly prevalent in transmembrane regions of proteins that traverse the lipid bilayer.
You are observing proteins in a lab for an experiment. During transport, they have started to unwind and lose their shape.
The level of the structure is the proteins in the secondary.
To learn more about the secondary structure of a protein, refer to:
brainly.com/question/4684763
#SPJ9