Answer: 1037 miles per hour
Explanation: In order to see the sun in the same position in the sky, you would have to travel against the speed of rotation of the earth, because this is what causes the sun to appear in a constantly changing position.
Because of this, we will have to calculate the speed of rotation of the earth. To get started, we must know the circumference of the earth. Assuming the circumference formula for a sphere,

Where R is the radius of the earth, we find that the perimeter of the earth is approximately 24881 miles. The equation to calculate speed is given by

Because the earth completes one rotation in 24 hours, we have to find the speed of rotation as the perimeter of the earth divided by 24 hours.
The obtained result is 1037 miles per hour.
You would have to travel at 1037 miles per hour in the direction opposite to the direction the rotation is ocurring in.
The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k
Let r be the vector perpendicular to A and B,
r = A * B
A = 3i + 6j - 2k
B = 4i - j + 3k
a1 = 3
a2 = 6
a3 = - 2
b1 = 4
b2 = - 1
b3 = 3
a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k
a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k
a * b = 16 i - 17 j - 27 k
The perpendicular vector, r = 16 i - 17 j - 27 k
Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k
To know more about perpendicular vectors
brainly.com/question/14384780
#SPJ1
Answer:
(a) m = 33.3 kg
(b) d = 150 m
(c) vf = 30 m/s
Explanation:
Newton's second law to the block:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass s (kg)
a : acceleration (m/s²)
Data
F= 100 N
a= 3.0 m/s²
(a) Calculating of the mass of the block:
We replace dta in the formula (1)
F = m*a
100 = m*3
m = 100 / 3
m = 33.3 kg
Kinematic analysis
Because the block moves with uniformly accelerated movement we apply the following formulas:
d= v₀t+ (1/2)*a*t² Formula (2)
vf= v₀+a*t Formula (3)
Where:
d:displacement in meters (m)
t : time interval in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
a= 3.0 m/s²
v₀= 0
t = 10 s
(b) Distance the block will travel if the force is applied for 10 s
We replace dta in the formula (2):
d= v₀t+ (1/2)*a*t²
d = 0+ (1/2)*(3)*(10)²
d =150 m
(c) Calculate the speed of the block after the force has been applied for 10 s
We replace dta in the formula (3):
vf= v₀+a*t
vf= 0+(3*(10)
vf= 30 m/s
Complete Question:
Given
at a point. What is the force per unit area at this point acting normal to the surface with
? Are there any shear stresses acting on this surface?
Answer:
Force per unit area, 
There are shear stresses acting on the surface since 
Explanation:
![\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D)
equation of the normal,
![\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cb%20n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Traction vector on n, 
![T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
![T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B27%7D%7B%5Csqrt%7B33%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.


If the shear stress,
, is calculated and it is not equal to zero, this means there are shear stresses.

![\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%2028%28%20%281%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%281%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%29%5C%5C%5C%5C%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%20%5B%20%2828%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%2828%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%5D%5C%5C%5C%5C%5Ctau%20%3D%20%20%5Cfrac%7B-5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z)

Since
, there are shear stresses acting on the surface.
Answer:
a) 42 m/s, positive direction (to the east), b) 42 m/s, negative direction (to the west).
Explanation:
a) Let consider that Car A is moving at positive direction. Then, the relative velocity of Car A as seen by the driver of Car B is:

42 m/s, positive direction (to the east).
b) The relative velocity of Car B as seen by the drive of Car A is:

42 m/s, negative direction (to the west).