Answer:
60 rad/s
Explanation:
∑τ = Iα
Fr = Iα
For a solid disc, I = ½ mr².
Fr = ½ mr² α
α = 2F / (mr)
α = 2 (20 N) / (0.25 kg × 0.30 m)
α = 533.33 rad/s²
The arc length is 1 m, so the angle is:
s = rθ
1 m = 0.30 m θ
θ = 3.33 rad
Use constant acceleration equation to find ω.
ω² = ω₀² + 2αΔθ
ω² = (0 rad/s)² + 2 (533.33 rad/s²) (3.33 rad)
ω = 59.6 rad/s
Rounding to one significant figure, the angular velocity is 60 rad/s.
1. 2500/60 joules/sec
2. 2,500Nm
Answer:
3.135 kN/C
Explanation:
The electric field on the axis of a charged ring with radius R and distance z from the axis is E = qz/{4πε₀[√(z² + R²)]³}
Given that R = 58 cm = 0.58 m, z = 116 cm = 1.16m, q = total charge on ring = λl where λ = charge density on ring = 180 nC/m = 180 × 10⁻⁹ C/m and l = length of ring = 2πR. So q = λl = λ2πR = 180 × 10⁻⁹ C/m × 2π(0.58 m) = 208.8π × 10⁻⁹ C and ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m
So, E = qz/{4πε₀[√(z² + R²)]³}
E = 208.8π × 10⁻⁹ C × 1.16 m/{4π8.854 × 10⁻¹² F/m[√((1.16 m)² + (0.58 m)²)]³}
E = 242.208 × 10⁻⁹ Cm/{35.416 × 10⁻¹² F/m[√(1.3456 m² + 0.3364 m²)]³}
E = 242.208 × 10⁻⁹ Cm/35.416 × 10⁻¹² F/m[√(1.682 m²)]³}
E = 6.839 × 10³ Cm²/[1.297 m]³F
E = 6.839 × 10³ Cm²/2.182 m³F
E = 3.135 × 10³ V/m
E = 3.135 × 10³ N/C
E = 3.135 kN/C
Explanation:
Increase the temperature in Endothermic reactions (Reactions that absorb energy, or become cold) Decrease the temperature in Exothermic reactions (Reactions that release energy, or become hot) Add a catalyst (A substance that reduces activation energy, speeding up the reaction) Increase the concentration of reactants.
source: https://socratic.org/questions/how-can-a-chemical-change-be-speeded-up
Consider that the bar magnet has a magnetic field that is acting around it, which will imply that there is a change in the magnetic flux through the loop whenever it moves towards the conducting loop. This could be described as an induction of the electromotive Force in the circuit from Faraday's law.
In turn by Lenz's law, said electromotive force opposes the change in the magnetic flux of the circuit. Therefore, there is a force that opposes the movement of the bar magnet through the conductor loop. Therefore, the bar magnet does not suffer free fall motion.
The bar magnet does not move as a freely falling object.