Answer:
Option (b) is correct.
Explanation:
The motion under the influence of gravity is called projectile motion.
The acceleration due to gravity is constant through out the motion and it is always acting downwards.
When an athlete jumps and follow the projectile path, it always have the same horizontal velocity as there is no acceleration in the horizontal direction.
Also he has the vertical acceleration constant which is equal to the acceleration due to gravity and acts towards the center of earth.
Option (b) is correct.
Answer:
c) It has a greater frequency than red light but a smaller frequency than blue light.
Explanation:
According to the relation:
c = frequency × Wavelength
The higher the frequency, the lower the value of wavelength
The order of wavelength is:
Violet < Indigo < Blue < Green < Yellow < Orange < Red
Stated above, frequency is inversely proportional to the wavelength. Thus, the order of wavelength is:
Violet > Indigo > Blue > Green > Yellow > Orange > Red
Thus,
<u>Green light has lower frequency than blue light and higher than red light.</u>
When a ball is whirled using a string, it is restricted to move only in circular motion because the net force acting on the ball is towards the center of the circle. Hence, the acceleration of the ball is towards the center. But the velocity of ball is tangential to this circular path all the time. When the whirling is stropped, the string becomes slack and tension in the string becomes zero. The ball no more performs circular motion and the ball moves tangentially to the circle in straight line. Therefore, before letting go, velocity was variable. After letting go, velocity becomes constant.
Answer:
part A ⇒ u = 1.28 m
part B ⇒v = 0.43 m
Explanation:
for u is the distance to the object from the mirror and v is the distance from the mirror to the image.
Part A:
the mirror equation is given by:
1/f = 1/v + 1/u
but we told that, v = 1/3u:
1/f = 3/v + 1/u = 4/u
1/f = 4/u
f = u/4
u = 4f
= 4×(32×10^-2)
= 1.28 m
Therefore the distance from the mirror to the object is 1.28 m.
part B:
v = 1/3×u = 1/3×(1.28) = 0.43 m
A little confused by the wording of the problem, but it is true that an object can have a negative acceleration and be speeding up in the negative direction… so I’d go with True