1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
9

. Consider the single-engine light plane described in Prob. 2. If the specific fuel consumption is 0.42 lb of fuel per horsepowe

r per hour, the fuel capacity is 44 gal, and the maximum gross weight is 3400 lb, calculate the range and endurance at standard sea level.
Engineering
1 answer:
Trava [24]3 years ago
7 0

Answer:

Hence the Range and Endurance of single engine plane is given by

650.644 miles and 5.3528 hrs at standard sea level.

Explanation:

Given :

A single engine light plane with ,

Specific fuel consumption 0.42lb/hr/hp.

Fuel capacity =44 gal.

Gross weight =3400 lb.

To find :

Range and Endurance of the plane.

Solution:

Consider  all standard measures of standard single engine propeller plane

as

Wing span =35.8 fts.

Wing swing area=174 sq ft

parasite drag coefficient  =Cd.o.=0.025

Oswald's eff. factor= 0.8

ρ=0.002377= corresponds to standard sea level constant.

Now

Formula for Range is given by, Breguent formula.

R=(η/c)  *(Cl/Cd)*ln(W1/W0)

here η is Oswald's constant,

Now calculating lift(Cl) and drag coefficient (Cd)

Cl=W/(1/2*ρ*v^2*S)

W=Gross weight

ρ=0.002377

Assume v=200 ft/sec normally,

S=174 Sq .ft.

CI=3400/(1/2*0.002377*200*200*174)

=6800/16543.9

=0.4110

Now calculating drag constant,

AR=(wing span)^2/wing swing area

=(35.8)^2/174

=7.37

Now

Drag Coefficient

Cd=Cd.o.+ (Cl^2)/(pie*e*AR)

=0.025+(0.4110)^2/(3.142*0.8*7.36)

=0.0342

Given that 44 gal fuel capacity and in Aviation weight of fuel is 5.64 lb/gal

hence weight of fuel=W1=3400- (44*5.64)

=3151.84

Now

for specific fuel consumption=0.42  lb/hp/hr

=0.42  lb*(1/550 ft)*(1/3600)sec

=2.12 *10^-7 lb/ft/sec

Now further calculating range

R=(η/c)  *(Cl/Cd)*ln(W1/W0)

={0.8/(2.12*10^-7)}*(0.4110/0.0342)*ln(3151.84/3400)

=0.024908/0.072504

=0.34354*10^7

=3.4353 *10^6 fts.

1mi =5280 ft

=(3.4353/5280)*10^6

=650.644 miles

Now

For Endurance

E=(η/c)*{(Cl^3/2)/Cd}*(2*ρ*S)^1/2*[1/(W1)^1/2  -1/(W0)^1/2].

=(0.8/2.12*10^-7)*{(0.4110^3/2)/0.0342}*(2*0.002377*174)^1/2*[1/(3151.84)^1/2  -1/(3400)^1/2]

=3.7735*10^6*7.7043*0.8272*0.0006629

=0.01927*10^6

=1.927*10^4 sec

here 1hr =3600 sec

E=(1.927/3600)*10^4

=5.3528 hrs

You might be interested in
The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
Natasha2012 [34]

This question is not complete, the complete question is;

The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005

Answer:

the length of the pipe is 11583 in or 965.25 ft

Explanation:

Given the data in the question;

Static pressure ratio; p1/p2 = 10

friction coefficient f = 0.005

diameter of pipe, D =4 inch

first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so

4fL_{max} / D = 57.915

we substitute

(4×0.005×L_{max}) / 4  = 57.915

0.005L_{max} = 57.915

L_{max} = 57.915 / 0.005

L_{max}  = 11583 in

Therefore, the length of the pipe is 11583 in or 965.25 ft

6 0
3 years ago
How can you do this 5.2.4: Rating?
gizmo_the_mogwai [7]

Answer:

whats the question

Explanation:

5 0
3 years ago
All the fnaf UNC charecters
astra-53 [7]

Answer:

T.Freddy.

T.Bonnie.

T.Chica.

G.Freddy.

N. Freddy.

F.Foxy.

Mr.Hippo.

R.Freddy.

Explanation:

8 0
3 years ago
Read 2 more answers
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
What tool is used to measure aggregates in laying tools<br>​
denpristay [2]

Answer:

Sieve Shaker

Explanation:

6 0
2 years ago
Other questions:
  • . A constant current of 1 ampere is measured flowing into the positive reference terminal of a pair of leads whose voltage we’ll
    10·1 answer
  • Discuss four (4) advantages of direct and indirect water supply system.
    5·2 answers
  • The gas-turbine cycle of a combined gas–steam power plant has a pressure ratio of 8. Air enters the compressor at 290 K and the
    15·1 answer
  • The Acme tool is aligned to the work with: A. A square B. The eye C. An Acme tool gage D. A center gage
    14·1 answer
  • A designer needs to select the material for a plate under tensile stress. Assuming that the applied tensile force is 13,000 lb a
    5·1 answer
  • 1. In order to minimize hazards, what should you do before starting a job
    10·2 answers
  • A 240-ton tugboat is moving at 6 ft/s with a slack towing cable attached to a 100-ton barge that is at rest. The cable is being
    14·1 answer
  • Technician A says that fuel filler caps with pressure and vacuum vents are used with EVAP system fuel tanks. Technician B says t
    5·1 answer
  • Which level of acceleration should you use when accelerating on a short highway entry ramp?
    11·1 answer
  • the maximum load that a hori-zontal beam can carry is directly proportional to its width. if a beam 1.5 inches wide can support
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!