Answer:
All 3 principal stress
1. 56.301mpa
2. 28.07mpa
3. 0mpa
Maximum shear stress = 14.116mpa
Explanation:
di = 75 = 0.075
wall thickness = 0.1 = 0.0001
internal pressure pi = 150 kpa = 150 x 10³
torque t = 100 Nm
finding all values
∂1 = 150x10³x0.075/2x0,0001
= 0.5625 = 56.25mpa
∂2 = 150x10³x75/4x0.1
= 28.12mpa
T = 16x100/(πx75x10³)²
∂1,2 = 1/2[(56.25+28.12) ± √(56.25-28.12)² + 4(1.207)²]
= 1/2[84.37±√791.2969+5.827396]
= 1/2[84.37±28.33]
∂1 = 1/2[84.37+28.33]
= 56.301mpa
∂2 = 1/2[84.37-28.33]
= 28.07mpa
This is a 2 d diagram donut is analyzed in 2 direction.
So ∂3 = 0mpa
∂max = 56.301-28.07/2
= 14.116mpa
Answer:
Sound barrier.
Explanation:
Sound barrier is a sudden increase in drag and other effects when an aircraft travels faster than the speed of sound. Other undesirable effects are experienced in the transonic stage, such as relative air movement creating disruptive shock waves and turbulence. One of the adverse effect of this sound barrier in early plane designs was that at this speed, the weight of the engine required to power the aircraft would be too large for the aircraft to carry. Modern planes have designs that now combat most of these undesirable effects of the sound barrier.
Answer:
A supercapacitor, also called an ultracapacitor, is a high-capacity capacitor with a capacitance value much higher than other capacitors, but with lower voltage limits, that bridges the gap between electrolytic capacitors and rechargeable batteries.
Explanation:
Answer:
This question is comprising many parts (a to r). That is impossible to answer in one sheet. Following are attached images having answers to most of the parts.
I hope it will help you a lot.
Explanation:
Answer:
a) 
b) attached below
c) type zero system
d) k > 
e) The gain K increases above % error as the steady state speed increases
Explanation:
Given data:
Motor voltage = 12 v
steady state speed = 200 rad/s
time taken to reach 63.2% = 1.2 seconds
<u>a) The transfer function of the motor from voltage to speed</u>
let ;
be the transfer function of a motor
when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec
hence the transfer function of the motor from voltage to speed
= 
<u>b) draw the block diagram of the system with plant controller and the feedback path </u>
attached below is the remaining part of the detailed solution
c) The system is a type-zero system because the pole at the origin is zero
d) ) k > 