Answer:
screw is the answer of the question
Answer:
D
Explanation:
To know which is most or least cost-effective, it's not enough to look at only the per day rate, or only the time to complete. You have to multiply them to get the total cost of the project.
![\left[\begin{array}{ccccc}&Cost\ per\ day\ (\$)&Time\ to\ complete\ (days)&Total\ cost\ (\$)\\Zoe&500&8&4000\\Greg&650&10&6500\\Orion&400&12&4800\\Jin&700&5&3500\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D%26Cost%5C%20per%5C%20day%5C%20%28%5C%24%29%26Time%5C%20to%5C%20complete%5C%20%28days%29%26Total%5C%20cost%5C%20%28%5C%24%29%5C%5CZoe%26500%268%264000%5C%5CGreg%26650%2610%266500%5C%5COrion%26400%2612%264800%5C%5CJin%26700%265%263500%5Cend%7Barray%7D%5Cright%5D)
As you can see, Greg is the least cost-effective because he charges the most for the project.
Answer:
180 x 60 inches
Width = 60 inches
Length = 180 inches
Explanation:
Given
Let L = Length
W = Width
P = Perimeter
Length = 3 * Width
L = 3W
Perimeter of Brass = 480 inches
P = 480
Perimeter is given as 2(L + W);
So, 2 (L + W) = 480
L + W = 480/2
L + W = 240
Substitute 3W for L; so,
3W + W = 240
4W = 240
W = 240/4
W = 60 inches
L = 3W
L = 3 * 60
L = 180 inches
Answer:
True
Explanation:
For point in xz plane the stress tensor is given by![\left[\begin{array}{ccc}Dx_{} &txz\\tzx&Dz\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DDx_%7B%7D%20%26txz%5C%5Ctzx%26Dz%5C%5C%5Cend%7Barray%7D%5Cright%5D)
where Dx is the direct stress along x ; Dz is direct stress along z ; tzx and txz are the shear stress components
We know that the stress tensor matrix is symmetrical which means that tzx = txz ( obtained by moment equlibrium )
thus we require only 1 independent component of shear stress to define the whole stress tensor at a point in 2D plane
Hi! bridges could have been collapse due to an error made by the engineers during construction.