1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
3 years ago
5

A white dwarf is:______.

Physics
1 answer:
bija089 [108]3 years ago
6 0

Answer:

the exposed core of a dead star, supported by electron degeneracy pressure.

Explanation:

A white dwarf is a low luminosity exposed core of a dead star having mass comparable to the sun but volume comparable to the earth . So its density is very high . These stars have lost the capacity to generate energy through the process of fusion . Due to high gravitational energy , it goes on shrinking but ultimately balanced by electron degeneracy pressure. It is not a main sequence star as it has lost the power of fusion .

You might be interested in
The mass of a moving object increases, but its speed stays the same. What happens to the kinetic energy of the object as a resul
Ronch [10]
We Know, K.E. = 1/2 × m × v²
From the expression, we can conclude that Kinetic energy is directly proportional to mass. So, as mass will increase, Kinetic energy will also increase.

In short, Your Correct answer would be Option B

Hope this helps!
8 0
2 years ago
Read 2 more answers
Two go-carts, A and B, race each other around a 1.0 track. Go-cart A travels at a constant speed of 20.0 /. Go-cart B accelerate
maria [59]

Complete Question

Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?

Answer:

Go-cart A is faster

Explanation:

From the question we are told that

       The length of the track is l =  1.0 \ km  =  1000 \  m

       The speed of  A is  v__{A}} =  20 \ m/s

       The uniform acceleration of  B is  a__{B}} =  0.333 \ m/s^2

  Generally the time taken by go-cart  A is mathematically represented as

              t__{A}} = \frac{l}{v__{A}}}

=>          t__{A}} = \frac{1000}{20}

=>           t__{A}} =  50 \  s

  Generally from kinematic equation we can evaluate the time taken by go-cart B as

             l =  ut__{B}} + \frac{1}{2}  a__{B}} * t__{B}}^2

given that go-cart B starts from rest  u =  0 m/s

So

            1000 =  0 *t__{B}} + \frac{1}{2}  * 0.333  * t__{B}}^2

=>         1000 =  0 *t__{B}} + \frac{1}{2}  0.333  * t__{B}}^2            

=>         t__{B}} =  77.5 \  seconds  

 

Comparing  t__{A}} \  and  \ t__{B}}  we see that t__{A}} is smaller so go-cart A is  faster

   

       

3 0
2 years ago
Water of density 1000 kg/m3 falls without splashing at a rate of 0.373 L/s from a height of 40.5 m into a 0.64 kg bucket on a sc
Sphinxa [80]

Answer:

       F_scale = 20.18 N

Explanation:

The scale reading corresponds to two factors, the first the weight of the water in the container and the second the force of the liquid that is falling at the moment of reading.

* Let's find the amount of liquid in the container for a time of t = 2.93 s

Let's use a direct proportion rule. If 0.373 l falls in one second at t = 2.93 s, how many liters are there

        V_{water} = 2.93 s (0.373 l / 1s) = 1.09 l

        V_{water} = 1.09 10⁻³ m³

the amount of water is

       ρ = m / V

       m = ρ V

       m = 1000 1.09 10⁻³

       m = 1.09 kg

so the weight of the liquid in the container for this time is

       W = mg

       W = 1.09 9.8

       W = 10.68 N

* Let's look for the force of the falling jet

Let's use Bernoulli's equation, where the subscript 1 is for the container and the subscript 2 is for the water at a height h

        P₁ + 1/2 ρ g v₁² + ρ g y₁ = P₂ + 1/2  ρ g v₂² + ρ g y₂

In this case, the water falls freely, so the external pressure is atmospheric.

         P₂ = P_{atm}

since they indicate that the water falls, we assume that its initial velocity is zero v₂ = 0

let's use kinematics to find the speed of a drop when it reaches the container y = 0

         v² = v₀² - 2 g (y-y₀)

         v = \sqrt{0 -2 g ( 0-y_o)}

let's calculate

         v = √(2 9.8 40.5)

         v = 28.17 m / s

this is the speed in the container v₁ = 28.17 m / s

the height from where it falls is y₂ = 40.5 and reaches the container y₁ = 0

we substitute in Bernoulli's equation

         P₁ +1/2 ρ g v₁² + 0 = P_{atm} + 0 + ρ g y₂

         P₁ + ½ ρ g v₁² = P_{atm} + ρ g y₂

         P₁ = P_{atm} + ρ g y₂ - ½ ρ g v₁²

         P₁ = 1 10⁵ + 1000 9.8 40.5 - ½ 1000 28.17²

         P₁ = 1 10⁵ + 3.97 10⁵ - 3.69 10⁵

         P₁ = 1.28 10⁵ Pa

The definition of Pressure is

         P = F / A

         F = P A

We must suppose a time to carry out the reading suppose an average time of the modern equipment t = 0.1 s, in this time how much is now arriving

          m₂ = 0.373 0.2 = 0.0746 l = 0.0746 10⁻³ m³

the volume is V = A l

if the length of l = 1 m

A = 0.0746 10⁻³ m³ = 7.45 10⁻⁵ m²

the force of this jet is

            F = P A

            F = 1.28 10⁵  7.46 10⁻⁵

            F = 9.5 N

with these data let's use the equilibrium equation

           F_ scale -W - F = 0

           F_scale = W + F

           F_scale = 10.682 + 9.5

           F_scale = 20.18 N

4 0
2 years ago
Robin Hood wishes to split an arrow already in the bull's-eye of a target 40 m away.
tamaranim1 [39]

Answer:

5.843 m

Explanation:

suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.

lets consider that horizontal motion

distance = speed * time

time = 40/ 37 = 1.081 s

arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.

applying motion equation

(assume g = 10 m/s²)

s=ut+\frac{1}{2}*gt^{2}  \\= 0+\frac{1}{2}*10*1.081^{2}\\= 5.843 m

Arrow misses the target by 5.843m ig the arrow us split horizontally

4 0
2 years ago
How can a force change the motion of an object that is already moving?
lara [203]

Answer:They may cause motion to change

Explanation:They may cause motion; they may also slow, stop, or change the direction of motion of an object that is already moving. Since force cause changes in the speed or direction of an object, we can say that forces cause changes in velocity. Remember that acceleration is a change in velocity.

7 0
2 years ago
Other questions:
  • Which law is described by the equation p1v1 = p2v2 ?
    5·2 answers
  • Planets formed from ____ left over from the formation of the Sun at the center of the cloud. A. Gravel c. Solar wind b. Gas, ice
    8·2 answers
  • What is your understanding of repetition and replication in science?
    11·1 answer
  • Mass is a measure of weight. True False
    6·2 answers
  • The 45-g arrow is launched so that it hits and embeds in a 1.40 kg block. The block hangs from strings. After the arrow joins th
    11·1 answer
  • Parallax error occurs when the observer records data when he/she is at an angle to the event he/she is observing. Where do you t
    13·1 answer
  • When the tympanic membrane vibrates with the same frequency as the incoming sound waves it is known asamplitude.pitch.hertz.reso
    5·1 answer
  • Mention three features of the Constitution and a note about them​
    6·1 answer
  • Explain the working and principle of perisocope.​
    11·1 answer
  • An example of fluid friction is:
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!