You can just use basic
trigonometry to solve for the x & y components.
<span>vector a = 10cos(30) i +
10sin(30) j = <5sqrt(3), 5></span>
vector b is only slightly harder because the angle is relative
to vector a, and not the positive x-axis. Anyway, this just makes vector b with
an angle of 135deg to the positive x-axis.
<span>vector b = 10cos(135) i +
10sin(135) j = <-5sqrt(2), 5sqrt(2)></span>
So
now we can do the questions:
r = a + b
r = <5sqrt(3)-5sqrt(2), 5+5sqrt(2)>
(a)
5sqrt(3)-5sqrt(2)
(b)
5+5sqrt(2)
(c)
|r|
= sqrt( (5sqrt(3)-5sqrt(2))2 + (5+5sqrt(2))2 )
=
12.175
(d)
θ = tan-1 (
(5+5sqrt(2)) / (5sqrt(3)-5sqrt(2)) )
θ
= 82.5deg
<span> </span>
Answer:
the cochlea
Explanation:
The cochlea contains the spiral organ of Corti, which is the receptor organ for hearing. It consists of tiny hair cells that translate the fluid vibration of sounds from its surrounding ducts into electrical impulses that are carried to the brain by sensory nerves.
C) The longer the line, the greater the magnitude of the vector. As for the direction, just think of a compass.
Answer:
a) correct answer is C
, b) 14º from the west to the north, c) v_{1g} = 300.79 km / h
Explanation:
This is a relative speed exercise using the addition of speeds.
1) when it is not specified regarding what is being measured, the medicine is carried out with respect to the Z Earth, therefore the correct answer is C
2 and 3) In this case we must compose the speed using the Pythagorean Theorem.
² =
² +
²
where v_{1a} is the speed of the airplane with respect to the air, v_{1g} airplane speed with respect to the Earth, v_{ag} air speed with respect to the Earth
in this case let's clear the speed of the airplane with respect to the Earth
v_{1g} = √(v_{1a}² - v_{ag}²)
v_{1g} = √ (310² - 75²)
v_{1g} = 300.79 km / h
we find the direction of the airplane using trigonometry
sin θ = v_{ag} / v_{1a}
θ = sin⁻¹ (v_{ag} /v_{1a})
θ = sin⁻¹ (75/310)
θ= 14º
the pilot must direct the aircraft at an angle of 14º from the west to the north
Answer:
They collide, couple together, and roll away in the direction that <u>the 2m/s car was rolling in.</u>
Explanation:
We should start off with stating that the conservation of momentum is used here.
Momentum = mass * speed
Since, mass of both freight cars is the same, the speed determines which has more momentum.
Thus, the momentum of the 2 m/s freight car is twice that of the 1 m/s freight car.
The final speed is calculated as below:
mass * (velocity of first freight car) + mass * (velocity of second freight car) = (mass of both freight cars) * final velocity
(m * V1) + (m * V2) = (2m * V)
Let's substitute the velocities 1m/s for the first car, and - 2m/s for the second. (since the second is opposite in direction)
We get:

solving this we get:
V = - 0.5 m/s
Thus we can see that both cars will roll away in the direction that the 2 m/s car was going in. (because of the negative sign in the answer)