Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
According to the net force, the acceleration of the book is 16.47 m/s².
We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as
∑F = m . a
where F is force, m is mass and a is acceleration
From the question above, we know that
m = 3 kg
g = 9.8 m/s²
F1 = 20 N
Find the net force
∑F = F1 + W
∑F = 20 + m . g
∑F = 20 + 3 . 9.8
∑F = 20 + 29.4
∑F = 49.4 N
Find the acceleration
∑F = m . a
49.4 = 3 . a
a = 16.47 m/s²
Find more on force at: brainly.com/question/25239010
#SPJ4
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.
Here light ray strikes to interface at an angle of 45 degree and then refracts into other medium such that it will bend towards boundary.
So here the angle of incidence will be less than the angle of refraction as light moves towards the boundary after refraction which mean it will bend away from the normal
here it can be said that medium 2 will be rarer then medium 1
So here the possible options are
1. Water
Air
2. Diamond
Air
So in above two options medium 1 is denser and medium 2 is rarer
The time required for a moon to orbit around the earth is about 27-28 days
In order for lunar eclipse to occur the line that should be formed is:
Sun-Earth-Moon
because earth is making shade on moon
in order for solar eclipse to occur the line is now:
Sun-Moon-Earth
because moon is making a shade on earth (blocking sun = solar eclipse)
Therefore moon needs to make half of its orbit to go from behind the earth to in front of the earth.
28/2 = 14
Answer is 14