Answer:
8977.7 kg/m^3
Explanation:
Volume of water displaced = 55 cm^3 = 55 x 10^-6 m^3
Reading of balance when block is immersed in water = 4.3 N
According to the Archimedes principle, when a body is immersed n a liquid partly or wholly, then there is a loss in the weight of body which is called upthrust or buoyant force. this buoyant force is equal to the weight of liquid displaced by the body.
Buoyant force = weight of the water displaced by the block
Buoyant force = Volume of water displaced x density of water x g
= 55 x 10^-6 x 1000 x .8 = 0.539 N
True weight of the body = Weight of body in water + buoyant force
m g = 4.3 + 0.539 = 4.839
m = 0.4937 kg
Density of block = mass of block / volume of block
= 
Density of block = 8977.7 kg/m^3
Answer:
The speed of q₂ is 
Explanation:
Given that,
Distance = 0.4 m apart
Suppose, A small metal sphere, carrying a net charge q₁ = −2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q₂ = −8μC and mass 1.50g, is projected toward q₁. When the two spheres are 0.800m apart, q₂ is moving toward q₁ with speed 20m/s.
We need to calculate the speed of q₂
Using conservation of energy



Put the value into the formula






Hence, The speed of q₂ is 
<span>5.82 x 10-49 joules7.62 x 10-19 joules8.77 x 10-12 joules1.09 x 10-12<span> joules </span><span>answer is b</span></span>
The answer is true hope that helped!!