Answer:
The answer is 18 N.
Explanation:
A force can be divided into components x and y components. The component along the x-axis is called the horizontal component and along the y-axis is called the vertical component. In this case, as the force is in a horizontal direction and is also known as x-component of force. The x- component of force is
Fx = Fcosθ
Fx = 22(cos 35°)
Fx = 22 x 0.819
Fx = 18 N
Child's horizontal pull forces are equal to that of frictional resistance force on the wagon.
Answer:
hmm
Explanation:
By increasing the number of turns in the coil, strength of magnetic field, speed of rotation of the coil in the magnetic field and by decreasing the distance between the coil and the magnet the magnitude of the induced e.m.f. can be increased in generator/dynamo.
Answer:
7.28×10⁻⁵ T
Explanation:
Applying,
F = BILsin∅............. Equation 1
Where F = magnetic force, B = earth's magnetic field, I = current flowing through the wire, L = Length of the wire, ∅ = angle between the field and the wire.
make B the subject of the equation
B = F/ILsin∅.................. Equation 2
From the question,
Given: F = 0.16 N, I = 68 A, L = 34 m, ∅ = 72°
Substitute these values into equation 2
B = 0.16/(68×34×sin72°)
B = 0.16/(68×34×0.95)
B = 0.16/2196.4
B = 7.28×10⁻⁵ T
Answer:
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Explanation:
The orbital period of a planet around a star can be expressed mathematically as;
T = 2π√(r^3)/(Gm)
Where;
r = radius of orbit
G = gravitational constant
m = mass of the star
Given;
Let R represent radius of earth orbit and r the radius of planet orbit,
Let M represent the mass of sun and m the mass of the star.
r = 4R
m = 16M
For earth;
Te = 2π√(R^3)/(GM)
For planet;
Tp = 2π√(r^3)/(Gm)
Substituting the given values;
Tp = 2π√((4R)^3)/(16GM) = 2π√(64R^3)/(16GM)
Tp = 2π√(4R^3)/(GM)
Tp = 2 × 2π√(R^3)/(GM)
So,
Tp/Te = (2 × 2π√(R^3)/(GM))/( 2π√(R^3)/(GM))
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.