<u>100° C</u> she can expect once the water begins to boil.
<u>Option: B</u>
<u>Explanation:</u>
The boiling point for water at 1 pressure atmosphere of sea level is 212 ° F or 100 ° C. That value isn't a fixed. Water's boiling point is dependent on the ambient pressure, which varies based on elevation. At a lower temperature, water boils as one gains altitude like getting higher on a hill, and boils at a higher temperature if one increases the atmospheric pressure of returning to or below sea level.
It also relies upon the water's purity. Water containing contaminants like salted water boils at a level higher than pure water. This effect is called acceleration of the boiling point and is one of the material's colligative features.
Answer: T = 472.71 N
Explanation: The wire vibrates thus making sound waves in the tube.
The frequency of sound wave on the string equals frequency of sound wave in the tube.
L= Length of wire = 26cm = 0.26m
u=linear density of wire = 20g/m = 0.02kg/m
Length of open close tube = 86cm = 0.86m
Sound waves in the tube are generated at the second vibrational mode, hence the relationship between the length of air and and wavelength is given as
L = 3λ/4
0.86 = 3λ/4
3λ = 4 * 0.86
3λ = 3.44
λ = 3.44/3 = 1.15m.
Speed of sound in the tube = 340 m/s
Hence to get frequency of sound, we use the formulae below.
v = fλ
340 = f * 1.15
f = 340/ 1.15
f = 295.65Hz.
f = 295.65 = frequency of sound wave in pipe = frequency of sound wave in string.
The string vibrated at it fundamental frequency hence the relationship the length of string and wavelength is given as
L = λ/2
0.26 = λ/2
λ = 0.52m
The speed of sound in string is given as v = fλ
Where λ = 0.52m f = 295.65 Hz
v = 295.65 * 0.52
v = 153.738 m/s.
The velocity of sound in the string is related to tension, linear density and tension is given below as
v = √(T/u)
153.738 = √T/ 0.02
By squaring both sides
153.738² = T / 0.02
T = 153.738² * 0.02
T = 23,635.372 * 0.02
T= 472.71 N
Given that,
Mass of the stone, m = 400 g = 0.4 kg
Initial speed, u = 20 m/s
It is climbed to a height of 12 m.
To find,
The work done by the resistance force.
Solution,
Let v is the final speed. It can be calculated by using the conservation of energy.

Work done is equal to the change in kinetic energy. It can be given as follows :

So, the required work done is 32.99 J.
Answer:
Mass, m = 4 kg
Explanation:
<u>Given the following data;</u>
Energy = 3.6 * 10^17 Joules
We know that the speed of light is equal to 3 * 10⁸ m/s.
To find the mass of the substance;
The theory of special relativity by Albert Einstein gave birth to one of the most famous equation in science.
The equation illustrates, energy equals mass multiplied by the square of the speed of light.
Mathematically, the theory of special relativity is given by the formula;

Where;
- E is the energy possessed by a substance.
- m is the mass.
- c is the speed of light.
Substituting into the formula, we have;



Mass, m = 4 kg
Instant messaging is the type of electronic community that
allows real-time discussion among members.
Instant messaging<span> <span>(IM) is
a type of online chat which offers real-time text transmission over the
Internet. A LAN </span></span>messenger<span> <span>operates
in a similar way over a local area network. </span></span>
I am hoping that this answer has satisfied your query and it
will be able to help you in your endeavor, and if you would like, feel free to
ask another question.