Answer:
(a) Bus will traveled further a distance of 40 m
(b) It will take 7.5 sec to stop the bus
Explanation:
We have given initial velocity of the bus u = 24 m/sec
And final velocity v = 16 m/sec
Distance traveled in this process s = 50 m
From third equation of motion we know that 


(a) Now as the bus finally stops so final velocity v = 0 m/sec
So 

s= 90 m
So further distance traveled by bus = 90-50 =40 m
(b) Now as the bus finally stops so final velocity v= 0 m/sec
Initial velocity u = 24 m/sec
Acceleration 
So time 
Answer:
v₁f = 0.5714 m/s (→)
v₂f = 2.5714 m/s (→)
e = 1
It was a perfectly elastic collision.
Explanation:
m₁ = m
m₂ = 6m₁ = 6m
v₁i = 4 m/s
v₂i = 2 m/s
v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i + ((2m₂) / (m₁ + m₂)) v₂i
v₁f = ((m – 6m) / (m + 6m)) * (4) + ((2*6m) / (m + 6m)) * (2)
v₁f = 0.5714 m/s (→)
v₂f = ((2m₁) / (m₁ + m₂)) v₁i + ((m₂ – m₁) / (m₁ + m₂)) v₂i
v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)
v₂f = 2.5714 m/s (→)
e = - (v₁f - v₂f) / (v₁i - v₂i) ⇒ e = - (0.5714 - 2.5714) / (4 - 2) = 1
It was a perfectly elastic collision.
Answer:
the number of photons of yellow light does the lamp generate in 1.0 s is 7 x 
Explanation:
given information:
power, P = 25 W
wavelength. λ - 580 nm = 5.80 x
m
time, t = 1 s
to calculate the number of photon(N), we use the following equation
N = λPt/hc
where
λ = wavelength (m)
P = power (W)
t = time interval (s)
h = Planck's constant (6.23 x
Js)
c = light's velocity (3 x
)
So,
N = λPt/hc
= (5.80 x
)(25)(1)/(6.23 x
)(3 x
)
= 7 x 
Answer:
KE = 1/2 * m * 
Explanation:
use the formula:
KE = 1/2 * m * 
KE = kinetic energy in joules (J)
m = mass in kg
v = velocity in m/s
Answer:
The temperature is 90.4°C
Explanation:
See the attached for explanation