The cross section of the satellite dish is an illustration of a quadratic function
The quadratic function that models the cross-section is y = 1/6(x^2 - 9)
<h3>How to determie the equation of the cross-section?</h3>
The given parameters are:
Width = 6 feet
Depth = 1.5 feet
Express the width the sum of two equal numbers
Width = 3 + 3
The above means that, the equation of the cross section passes through the x-axis at:
x = -3 and 3
So, we have:
y = a(x - 3) * (x + 3)
Express as the difference of two squares
y = a(x^2 - 9)
The depth is 1.5.
This is represented as: (x,y) =(0,-1.5)
So, we have:
-1.5 = a(0^2 - 9)
Evaluate the exponent
-1.5 = -9a
Divide both sides by -9
a = 1/6
Substitute 1/6 for a in y = a(x^2 - 9)
y = 1/6(x^2 - 9)
Hence, the quadratic function that models the cross-section is y = 1/6(x^2 - 9)
Read more about quadratic functions at:
brainly.com/question/1497716
Answer:
the missing is 4.98
Step-by-step explanation:
Answer:
Slope: 
Equation: 
Step-by-step explanation:
The line of the best fit passes through the points (0,8) and (4,6).
If the line passes through the points
and
then the slope of the line is

Hence, the slope of the line of the best fit is

The equation of the line is

where m is the slope and b is y-intercept, so the equation of the line of the best fit is

P=2(L+W)
P=364
L=99
sub and find W
364=2(99+W)
divide both sides by 2
182=99+w
subtract 99 from both sides
83=W
w=83ft
Yes, i believe so because u can count back twice and u will get 5. You could al so do: 7-2=5. Hope this helps