Back emf is 85.9 V.
<u>Explanation:</u>
Given-
Resistance, R = 3.75Ω
Current, I = 9.1 A
Supply Voltage, V = 120 V
Back emf = ?
Assumption - There is no effects of inductance.
A motor will have a back emf that opposes the supply voltage, as the motor speeds up the back emf increases and has the effect that the difference between the supply voltage and the back emf is what causes the current to flow through the armature resistance.
So if 9.1 A flows through the resistance of 3.75Ω then by Ohms law,
The voltage across the resistance would be
v = I x R
= 9.1 x 3.75
= 34.125 volts
We know,
supply voltage = back emf + voltage across the resistance
By plugging in the values,
120 V = back emf + 34.125 V
Back emf = 120 - 34.125
= 85.9 Volts
Therefore, back emf is 85.9 V.
Answer:
solution
we know that .
s=ut+½at²
now, putting the values in the second equation of motion ,
we get,
S=20×10+1/2×(10)²
S=200+1×100
S=200+100
S=300m
the distance covered by given body or object in 10 seconds is 300 m.
A because helium is in balloons and it’s lifting the balloon. Hope this helps!
(a) The acceleration of the salt shaker is 1.18 m/s².
(b) The distance traveled by the baseball player before coming to rest is 204.1 m.
<h3>
Acceleration of the salt shaker</h3>
The acceleration of the salt shaker at the given coefficient of kinetic friction is determined as follows;
a = μg
a = 0.12 x 9.8
a = 1.18 m/s²
Acceleration of the baseball player is calculated as follows;
a = μg
a = 0.4 x 9.8
a = 3.92 m/s²
<h3>Distance traveled by the baseball player</h3>
The distance traveled by the baseball player before coming to rest is calculated as follows;
v² = u² - 2as
0 = 40² - 2(3.92)s
0 = 1600 - 7.84s
7.84s = 1600
s = 204.1 m
The complete question is below:
A baseball player slides into third base with an initial speed of 40 m/s. If the coefficient of kinetic friction between the player and the ground is 0.40, how far does the player slide before coming to rest?
Learn more about coefficient of friction here: brainly.com/question/20241845