A is 588N.
b) When she reaches her terminal speed, 10 seconds into the dive, she is no longer accelerating, so the net force on her is zero.
Think of it this way: If the net force were not zero she would continue to accelerate.
c) She is no longer accelerating.
Her acceleration is zero.
Answer:
v = 26. 88 m/s +23 m/s
Explanation:
u = 23 m/s, r = 150 cm, u₁ = 2.0 m/s, s =2.0 m


Solve s'



To determine the speed of the trick to the highway


Now to determine the velocity highway is going to be
v = ds/dt + u
v = 26. 88 m/s +23 m/s
Answer:
Explanation:
If Tim jogs a distance of 7.2 km to the west and then he turns south and jogs 1.4 km, the resultant displacement of Tim is calculated using the pythagoras theorem as shown;
R² = 7.2²+1.4²
R² = 51.84+1.96
R² = 53.8
R = √53.8
R = 7.33 km
Hence the resultant of Tim's jog back to the beginning is 7.33km
Answer:
The amplitude of the eardrum's oscillation is 6.65×10^-13 m.
Explanation:
Given data:
The sound has a frequency of 262 Hz
The sound level is 84 dB
The air density is 1.21 kg/m^3
The speed of sound is 346 m/s
Solution:
As, Intensity of sound is given by,
I = Io×10^(s/10 db)
I = 2×π^2×ρ×v×f^2×Sm^2
Thus,
Sm = √(Io×10^(s/10 db)) / √( 2×π^2×ρ×v×f^2)
Now, put the values,
Sm = √( 10^-12 × 10^(84/10) ) / √( 2×(3.14)^2×1.21×346×(262)^2 )
Sm = √(2.51×10^-4 / 5.66×10^8)
Sm = √0.443×10^-12
Sm = 6.65×10^-13 m.
It rises because hot air is less dense than cool air.