Answer:
a = 3.125 [m/s^2]
Explanation:
In order to solve this problem, we must use the following equation of kinematics. But first, we have to convert the speed of 90 [km/h] to meters per second.


where:
Vf = final velocity = 25 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 8 [s]
The initial speed is zero as the bus starts to koverse from rest. The positive sign of the equation means that the bus increases its speed.
25 = 0 + a*8
a = 3.125 [m/s^2]
The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
Given:
L = 1 mH =
H
total Resistance, R = 11 
current at t = 0 s,
= 2.8 A
Formula used:

Solution:
Using the given formula:
current after t = 0.5 ms = 
for the inductive circuit:


I =0.011 A
Answer:
C
Explanation:
they both have to be the same for both to not move
You need to check the temperature of food being stored in a temperature-controlled environment every four hours. The process of changing a space's temperature is called temperature control.
Cooking food alone may not be enough to avoid food poisoning, though, if the bacteria in food are allowed to grow to large numbers. When the temperature is between 5°C and 63°C, bacteria can grow. The risk zone is the range between 5°C and 63°C.
Temperature control is a process where the passage of heat energy into or out of a space or substance is adjusted to achieve the desired temperature. This process involves measuring or otherwise detecting changes in the temperature of the space (and all of the objects contained therein) or of the substance.
Learn more about temperature here
brainly.com/question/11244611
#SPJ4