Answer:
<h2>
f₀ = 158.12 Hertz</h2>
Explanation:
The fundamental frequency of the string f₀ is expressed as f₀ = V/4L where V is the speed experienced by the string.
where T is the tension in the string and
is the density of the string
Given T = 600N and
= 0.015 g/cm = 0.0015kg/m

The next is to get the length L of the string. Since the string is stretched and fixed at both ends, 200 cm apart, then the length of the string in metres is 2m.
L = 2m
Substituting the derived values into the formula f₀ = V/2L
f₀ = 632.46/2(2)
f₀ = 632.46/4
f₀ = 158.12 Hertz
Hence the fundamental frequency of the string is 158.12 Hertz
The key to solve this problem is the conservation of momentum. The momentum of an object is defined as the product between the mass and the velocity, and it's usually labelled with the letter
:

The total momentum is the sum of the momentums. The initial situation is the following:

(it's not written explicitly, but I assume that the 5-kg object is still at the beginning).
So, at the beginning, the total momentum is

At the end, we have

(the mass obviously don't change, the new velocity of the 15-kg object is 1, and the velocity of the 5-kg object is unkown)
After the impact, the total momentum is

Since the momentum is preserved, the initial and final momentum must be the same. Set an equation between the initial and final momentum and solve it for
, and you'll have the final velocity of the 5-kg object.
Answer:bippity boppity yee
Explanation: