Answer:
A) energy loss E = pgQtH
Where p = density in kg/m3
g = gravity acceleration in m/s2
Q = flow rate in m3/s
t = time taken for flow in sec
H = height of flow in m
B) power required to run pump;
P = pgQH
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
ok I will help you ha Ha ha ha ha ha ha ha ha ha ha ha
Answer:
In this era, Sun Ra was among the first of any musicians to make extensive and pioneering use of synthesizers and other various electronic keyboards; he was given a prototype Minimoog by its inventor, Robert Moog.
Explanation:
Answer:

Explanation:
The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

The velocity of water delivered by the fire hose is:


The maximum height is cleared in the Bernoulli's equation:



Answer:
It will not experience fracture when it is exposed to a stress of 1030 MPa.
Explanation:
Given
Klc = 54.8 MPa √m
a = 0.5 mm = 0.5*10⁻³m
Y = 1.0
This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed to a stress of 1030 MPa, given the values of <em>KIc</em>, <em>Y</em>, and the largest value of <em>a</em> in the material. This requires that we solve for <em>σc</em> from the following equation:
<em>σc = KIc / (Y*√(π*a))</em>
Thus
σc = 54.8 MPa √m / (1.0*√(π*0.5*10⁻³m))
⇒ σc = 1382.67 MPa > 1030 MPa
Therefore, the fracture will not occur because this specimen can handle a stress of 1382.67 MPa before experience fracture.