1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
7

A) Consider an air standard otto cycle that has a heat addition of 2800 kJ/kg of air, a compression ratio of 8 and a pressure an

d temperature at the beginning of compression process of 1 bar, 300 k. Determine:
(i) Maximum pressure and temperature in the cycle
(ii) Thermal efficiency
(iii) Mean effective pressure.
Assume for air Cp = 1.005 kJ/kg K, Cp = 0.718 kJ/kg K and R = 287 kJ/kg K.
(b) Explain any four types of classification of an Internal combustion engines.
:
Engineering
1 answer:
Angelina_Jolie [31]3 years ago
8 0

Answer:

a) i) The maximum pressure is approximately 122.37 bar

ii) The thermal efficiency is approximately 56.47%

iii) The mean effective pressure is approximately 20.974 bar

b) (b) Four types of internal combustion engine includes;

1) The diesel engine

2) The Otto engine

3) The Brayton engine

4) The Wankel engine

Explanation:

The parameters of the Otto cycle are;

The heat added, Q_{in} = 2,800 kJ/kg

The compression ratio, r = 8

The beginning compression pressure, P₁ = 1 bar

The beginning compression temperature, T₁ = 300 K

Cp = 1.005 kJ/kg·K

Cv = 0.718 kJ/kg·K

R = 287 kJ/kg·K

K = Cp/Cv = 1.005 kJ/kg·K/(0.718 kJ/kg·K) ≈ 1.4

T₂ = T₁×r^(k - 1)

∴ T₂ = 300 K×8^(1.4 - 1) ≈ 689.219 K

\dfrac{P_1\cdot V_1}{T_1}  = \dfrac{P_2\cdot V_2}{T_2}

P_2 = \dfrac{P_1\cdot V_1 \cdot T_2}{T_1 \cdot V_2}  = \dfrac{V_1}{V_2} \cdot  \dfrac{P_1 \cdot T_2}{T_1 } = r \cdot  \dfrac{P_1 \cdot T_2}{T_1 }

∴ P₂ = 8 × 1 bar × (689.219K)/300 K ≈ 18.379 bar

Q_{in} = m·Cv·(T₃ - T₂)

∴ Q_{in} = 2,800 ≈ 0.718 × (T₃ - 689.219)

T₃ = 2,800/0.718 + 689.219 = 4588.94 K

P₃ = P₂ × (T₃/T₂)

P₃ = 18.379 bar × 4588.94K/(689.219 K) = 122.37 bar

The maximum pressure = P₃ ≈ 122.37 bar

(ii) The thermal efficiency, \eta_{Otto}, is given as follows;

\eta_{Otto} = 1 - \dfrac{1}{r^{k - 1}}

Therefore, we have;

\eta_{Otto} = 1 - \dfrac{1}{8^{1.4 - 1}} \approx 0.5647

The thermal efficiency, \eta_{Otto} ≈ 0.5647

Therefore, the thermal efficiency ≈ 56.47%

(iii) The mean effective pressure, MEP is given as follows;

MEP = \dfrac{\left(P_3 - P_1 \cdot r^k \right) \cdot \left(1 - \dfrac{1}{r^{k-1}} \right)}{(k -1)\cdot (r - 1)}

Therefore, we get;

MEP = \dfrac{\left(122.37 - 1 \times 8^{1.4} \right) \cdot \left(1 - \dfrac{1}{8^{1.4-1}} \right)}{(1.4 -1)\cdot (8 - 1)} \approx 20.974

The mean effective pressure, MEP ≈ 20.974 bar

(b) Four types of internal combustion engine includes;

1) The diesel engine; Compression heating is the source of the ignition, with constant pressure combustion

2) The Otto engine which is the internal combustion engine found in cars that make use of gasoline as the source of fuel

The Otto engine cycle comprises of five steps; intake, compression, ignition, expansion and exhaust

3) The Brayton engine works on the principle of the steam turbine

4) The Wankel it follows the pattern of the Otto cycle but it does not have piston strokes

You might be interested in
Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of subst
Kaylis [27]

Answer:

The specific heat capacity of substance A is 1.16 J/g

Explanation:

The substances A and B come to a thermal equilibrium, therefore, the heat given by the hotter substance B is absorbed by the colder substance A.

The equation becomes:

Heat release by Substance B = Heat Gained by Substance A

The heat can be calculated by the formula:

Heat = mCΔT

where,

m = mass of substance

C = specific heat capacity of substance

ΔT = difference in temperature of substance

Therefore, the equation becomes:

(mCΔT) of A = (mCΔT) of B

<u>FOR SUBSTANCE A:</u>

m = 6.01 g

ΔT = Final Temperature - Initial Temperature

ΔT = 46.1°C - 20°C = 26.1°C

C = ?

<u>FOR SUBSTANCE B:</u>

m = 25.6 g

ΔT = Initial Temperature - Final Temperature

ΔT = 52.2°C - 46.1°C = 6.1°C

C = 1.17 J/g

Therefore, eqn becomes:

(6.01 g)(C)(26.1°C) = (25.6 g)(1.17 J/g)(6.1°C)

C = (182.7072 J °C)/(156.861 g °C)

<u>C = 1.16 J/g</u>

5 0
3 years ago
Can someone tell me what car year and model this is please
Arlecino [84]

Answer:

i think 1844

Explanation:

5 0
3 years ago
Read 2 more answers
Which of the following is typically wom when working in an atmosphere containing dust?
alukav5142 [94]

Answer:

Either D or C

Both of these masks are used for dust, but since half masks are generally cheaper and easier to use, I'd go with C.

If this is correct, I'd appreciate a brainliest.

3 0
3 years ago
For powder compaction using a single-action punch, derive an expression for the distribution of axial pressure within a die of r
Zielflug [23.3K]

Answer:

a) 2∪p/lb (l+b)dH

b) po exp( 4∪x/l)

Explanation:

please check the attachment for proper explanation and proper sign notations thanks.

3 0
3 years ago
B/ Evaluate e^(πi/2)
ivanzaharov [21]

Explanation:

≈4.8

There really isn't an elegant way to express it. Just plug and chug for irrationals raised to other irrationals.

8 0
2 years ago
Read 2 more answers
Other questions:
  • The fan blades suddenly experience an angular acceleration of 2 rad/s2. If the blades are rotating with an initial angular veloc
    10·1 answer
  • To become familiar with the general equations of plane strain used for determining in-plane principal strain, maximum in-plane s
    9·1 answer
  • A piston-cylinder device contains 0.8 kg of steam at 300°C and 1 MPa. Steam is cooled at constant pressure until one-half of the
    9·1 answer
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks. A) Safety shoesB) Le
    7·1 answer
  • Heat is applied to a rigid tank containing water initially at 200C, with a quality of 0.25, until the pressure reaches 8 MPa. De
    8·1 answer
  • I don't know what is this​
    9·1 answer
  • What happens to the electrolyte, during discharging?
    9·1 answer
  • Explain crystallographic defects.
    11·1 answer
  • QUESTION<br> Which of the following would assembler do an ideal automated assembly line?
    8·1 answer
  • Reverse masking forms a soft edge on the panel.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!