Answer:
<em>Undergo global warming at a faster rate than what we are seeing currently</em>
Explanation:
Climate can be described as the average weather of a place. The climate of a particular place can be described after looking at the temperature of the place for a year or more.
If factors, such as the Sun and volcanoes controlled climates then there would be an increase in the temperature and more global warming. Volcanoes can be described as heat erupting from mountains which will, of course, lead to global warming.
Answer:
0.0319 m³
Explanation:
Use ideal gas law:
PV = nRT
where P is pressure, V is volume, n is amount of gas, R is the gas constant, and T is temperature.
Since P, n, and R are held constant:
n₁ R / P₁ = n₂ R₂ / P₂
Which means:
V₁ / T₁ = V₂ / T₂
Plugging in:
0.0279 m³ / 280 K = V / 320 K
V = 0.0319 m³
The relationship between the charge flowing through a conductor, the current flowing through the conductor and the time is:
Q = It
Where Q is the charge, I is the current and t is the time of application of the current. Substituting the values:
48.96 = 1.39 x t
t = 35.2 seconds
Answer:
The speed change during the 45-minute trip is 20[mph]
Explanation:
When we see the speed at the 45 minutes this is 20 [mph] and at the 0 minutes the speed is 0 [mph].
Therefore the change is (20 - 0) = 20 [mph]
In the attached image we can see the different figures. In fig 1 we can see the bicycle's speed after 10 minutes when the speed becames constant.
In the fig. 2 we can find the graph when the biker stopped at 30 minutes and took a 15-minute break.
Figures 3 and 4, show the differences when a horizontal line is traced on a position vs time graph, and when the horizontal line is traced in a speed vs time graph.
For fig 3 we can conclude that the body is not moving therefore there is no velocity or acceleration. And for the fig 4, we can realize that the area under the horizontal line represents a displacement during the respective interval of time.