The correct answer is letter A. 6 millimeters. <span>If an object 18 millimeters high is placed 12 millimeters from a diverging lens and the image is formed 4 millimeters in front of the lens, the height of the image is 6 millimeters.
</span>
Solution:
18 / x = 12 / 4
12x = 72
x = 6mm
Answer:
Explanation:
The first method to engage is to listen to where the sound of air in the inner Tor escaping originated and look to see if u can find it. You can then feel the escape air with your hand.
You can Put it inside a container of water and see the bubble and rotate the inner tube to pass all of it through the water
To solve this problem we will apply the concepts related to volume, as a function of length and area, as of mass and density. Later we will take the same concept of resistance and resistivity, equal to the length per unit area. Once obtained from the known constants it will be possible to obtain the area by matching the two equations:
Mass of copper wire
Density
Resistively of copper
Resistance (R) = 0.390\Omega
Volume is defined as,
(1)
We know that,
(2)
Multiplying equation we have
Therefore the length of the wire is 1.68m
Since you are looking for the speed, you need to rearrange the formula which is f = speed / wavelength. That should give you speed = f (wavelength.) All you need to do next is to substitute the value to the following equation. speed = 250 Hz (6.0m) that should leave you with 1500 m/s which is very fast.
Answer:
<h3>The answer is 0.54 m</h3>
Explanation:
The wavelength of a wave can be found by using the formula
where
c is the velocity
f is the frequency
So we have
We have the final answer as
<h3>0.54 m</h3>
Hope this helps you