This is the same question that I just answered.
Have present the definition of acceleration:
a = Δv / Δt, this is change in velocity per unit of time.
a and v are in bold to mean that they are vectors.
1) a body traveling in a straight line and increasing in speed: CORRECT:
Acceleration is the change in velocity, either magnitude or direction or both. So, a body increasing in speed is accelerated.
2) a body traveling in a straight line and decreasing in speed: CORRECT
A decrease in speed is a change in velocity, so it means acceleration.
3) a body traveling in a straight line at constant speed: FALSE.
That body is not changing either direction or speed so its motion is not accelerated but uniform.
4) a body standing still : FALSE.
That body is not changind either direction or speed.
5) a body traveling at a constant speed and changing direction: CORRECT.
The change in direction means that the body is accelerated. The acceleration due to change in direction is named centripetal acceleration.
The first law is that every object stay at rest or stay in uniform motion in a straight line until it is forced to change its state by the action of an external force. This law is called law of inertia.
The second law is that the acceleration of an object is dependent upon two variables. the net force acting upon the object and the mass of the object. F= ma or force is equal to mass times acceleration. This law is known as the law of force and acceleration.
The third law is that for every action there is an equal and opposite reaction. every interaction there is a pair of forces acting on the two interacting objects. the size of forces on the first object equals the size of the force on the second object.
Hope this helps :)
can you please make this the brainliest answer it would really help . Thanks
Answer:
The mass of object is calculated as 5.36 kg
Explanation:
The known terms to find the mass are:
acceleration of object (a) = 22.35 
Force exerted (F) = 120N
mass of an object (m) = ?
From Newton's second law of motion;
F = ma
or, 120 = m × 22.35
or, m=
kg
∴ m = 5.36 kg
The process that produces the energy radiated by stars is nuclear fusion in the core.
For a star on the main sequence, it's the fusion of hydrogen nuclei into helium.
Let's be clear: The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.
Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.
After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.