1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadya68 [22]
3 years ago
5

Investigators should collect virtually everything from a crime scene. True or false?

Physics
2 answers:
Marianna [84]3 years ago
8 0

Answer:

false

Explanation:

its a trick question. not all evidence should be collected from the crime scene due to not all the evidence be useful.

Stels [109]3 years ago
4 0
I think it would be TRUE but I’m not 100% sure.... please let me know if I’m right or wrong
You might be interested in
What is the wavelength of a monochromatic light beam, where the photon energy is 2.70 × 10^−19 J? (h = 6.63 ×10^−34 J⋅s, c = 3.0
SOVA2 [1]

Answer:

Wavelength = 736.67 nm

Explanation:

Given

Energy of the photon = 2.70 × 10⁻¹⁹ J

Considering:

Energy=h\times frequency

where, h is Plank's constant having value as 6.63 x 10⁻³⁴ J.s

The relation between frequency and wavelength is shown below as:

c = frequency × Wavelength

Where, c is the speed of light having value = 3×10⁸ m/s

So, Frequency is:

Frequency = c / Wavelength

So,  Formula for energy:

Energy=h\times \frac {c}{\lambda}

Energy = 2.70 × 10⁻¹⁹ J

c = 3×10⁸ m/s

h = 6.63 x 10⁻³⁴ J.s

Thus, applying in the formula:

2.70\times 10^{-19}=6.63\times 10^{-34}\times \frac {3\times 10^8}{\lambda}

Wavelength = 736.67 × 10⁻⁹ m

1 nm = 10⁻⁹ m

So,

<u>Wavelength = 736.67 nm</u>

8 0
3 years ago
Dwayne ‘The Rock’ Johnson needs to escape from the fourth floor of a burning building (in a movie). He ties a rope around his wa
ZanzabumX [31]

Answer:

Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s

Explanation:

Let's start out with finding the force acting downwards because of the mass of 'The Rock':

Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N

Now the problem also states that the kinetic friction of the desk in this problem is 370 N

Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N

Now lets use F = ma to calculate for the acceleration of the desk:

787.58 = 63 x acceleration

acceleration = 12.501 m/s

Finally, we can use the motion equation:

v^2 - u^2 = 2*a*s

here u = 0 m/s (since initial speed of the desk is 0)

a = 12.501 m/s

and s = 10 m

Solving this we get:

v^2 - 0 = 2 * 12.501 * 10

v = 15.812 m/s

Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at            15.812 m/s when the desk reaches the window.

5 0
3 years ago
what equastion do you use to solve Riders in a carnival ride stand with their backs against the wall of a circular room of diame
Hitman42 [59]

Answer:

μsmín = 0.1

Explanation:

  • There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
  • This friction force has a maximum value, that can be written as follows:

       F_{frmax} = \mu_{s} *F_{n} (1)

       where  μs is the coefficient of static friction, and Fn is the normal force,

       perpendicular to the wall and aiming to the center of rotation.

  • This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
  • This force has the following general expression:

       F_{c} =  m* \omega^{2} * r (2)

       where ω is the angular velocity of the riders, and r the distance to the

      center of rotation (the  radius of the circle), and m the mass of the

      riders.

      Since Fc is actually Fn, we can replace the right side of (2) in (1), as

      follows:

     F_{frmax} = m* \mu_{s} * \omega^{2} * r (3)

  • When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

       m* g = m* \mu_{smin} * \omega^{2} * r (4)

  • (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
  • Cancelling the masses on both sides of (4), we get:

       g = \mu_{smin} * \omega^{2} * r (5)

  • Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

      60 rev/min * \frac{2*\pi rad}{1 rev} *\frac{1min}{60 sec} =6.28 rad/sec (6)

  • Replacing by the givens in (5), we can solve for μsmín, as follows:

       \mu_{smin} = \frac{g}{\omega^{2} *r}  = \frac{9.8m/s2}{(6.28rad/sec)^{2} *2.5 m} =0.1 (7)

5 0
3 years ago
Will mark BRAINLIEST!!!!
REY [17]

Answer:

Atoms found in nature are either stable or unstable. ... An atom is unstable (radioactive) if these forces are unbalanced; if the nucleus has an excess of internal energy. Instability of an atom's nucleus may result from an excess of either neutrons or protons

7 0
2 years ago
A train travels 90 kilometers in 2 hours, and then 66 kilometers in 2 hours. What is its average speed?
Inessa05 [86]
90+66=156
156/2=78

Reply:78kilometers in 2 hours.
3 0
3 years ago
Other questions:
  • Name three gases in the atmosphere
    15·2 answers
  • How long will it take you to pass a truck at 60 mph with oncoming traffic?
    9·2 answers
  • A stubborn 130 kg pig sits down and refuses to move. to drag the pig to the barn, the exasperated farmer ties a rope around the
    6·1 answer
  • Which planets have rings
    13·2 answers
  • Is Experience Nature or Nurture
    11·1 answer
  • Why does a coastal area have less variation in temperature than a noncoastal area? Temperatures feel cool all year round due to
    14·2 answers
  • At launch a rocket ship weighs 4.5 million pounds. When it is launched from rest, it takes 8.00 s to reach 161 km/h; at the end
    13·1 answer
  • Which of the following explains why metallic bonding only occurs between
    6·1 answer
  • Light travels in...<br> A) electromagnetic waves B) electrons <br> C) photons <br> D) a and c
    13·1 answer
  • An object is dropped at a height of 12 m from the ground. How fast is it moving just before it hits the ground?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!