Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>
Momentum = mass * speed
Speed is proportional to momentum; i.e. having twice the speed would result in double the momentum, a lower speed = smaller momentum, etc
Answer:
Explanation:
Given
mass flow rate=0.3 kg/s
diameter of pipe=5 cm
length of pipe=10 m
Inside temperature=22
Pipe surface =100
Temperature drop=30
specific heat of vapor(c)=2190 J/kg.k
heat supplied 
Heat due to convection =hA(100-30)




19,710=122.538 h

Answer:
a

b
Explanation:
From the question we are told that
The distance of separation is 
The is distance of the screen from the slit is 
The distance between the central bright fringe and either of the adjacent bright 
Generally the condition for constructive interference is

From the question we are told that small-angle approximation is valid here.
So 
=> 
=> 
Here n is the order of maxima and the value is n = 1 because we are considering the central bright fringe and either of the adjacent bright fringes
Generally the distance between the central bright fringe and either of the adjacent bright is mathematically represented as

From the question we are told that small-angle approximation is valid here.
So

=> 
So


substituting values



In the b part of the question we are considering the next set of bright fringe so n= 2
Hence
