Answer:
<em>The velocity of the ball as it hit the ground = 19.799 m/s</em>
Explanation:
Velocity: Velocity of a body can be defined as the rate of change of displacement of the body. The S.I unit of velocity is m/s. velocity is expressed in one of newtons equation of motion, and is given below.
v² = u² + 2gs.......................... Equation 1
Where v = the final velocity of the ball, g = acceleration due to gravity, s = the height of the ball
<em>Given: s = 20 m, u = 0 m/s</em>
<em>Constant: g = 9.8 m/s²</em>
<em>Substituting these values into equation 1,</em>
<em>v² = 0 + 2×9.8×20</em>
<em>v² = 392</em>
<em>v = √392</em>
<em>v = 19.799 m/s.</em>
<em>Therefore the velocity of the ball as it hit the ground = 19.799 m/s</em>
Answer:
-7 m
Explanation:
Displacement is a vector connecting the initial position of motion of an object to its final position.
For the car in this problem, we have:
- Initial position: + 11 m
- Final position: + 4 m
Therefore, the vector displacement will be:
d = +4 - (+11) = -7 m
Which means:
- Magnitude of 7 m
- Negative direction
Answer:
If the wheelchair is up 7.1 ft. In hight the time of flight should be 0.664 seconds and the distance should be 12.108 ft.
Explanation: I divided the displacement by the time and I used the equation Vx = 20 km/m
Answer:
1199 miles
Explanation:
1 hour 30 minutes = 1 + 30/60 = 1.5 hours
2 hours 15 minutes = 2 + 15/60 = 2.25 hours
The distance she flew in the 1st segment is:
1.5*345 = 517.5 miles
The distance she flew in the 2nd segment is:
2.25 * 345 = 776.25 miles
Since the 2nd segment is 45 degree with respect to the 1st segment, this means that she has flown
776.25 * cos(45) = 549 miles in-line with the 1st segment and
776.25* sin(45) = 549 miles perpendicular to the 1st segment:
So the distance from the end to her starting position is

Answer:
6400 W (or) 6.4 KW
Explanation:
Formula we use,
→ P = I²R
Let's solve for the power of device,
→ P = I²R
→ P = (8)² × 100
→ P = 64 × 100
→ [ P = 6400 W ]
Hence, the power is 6400 W.