Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Now, as the stoichiometrical factors are in terms of mole but no information about neither the temperature nor the pressure is given, by means of the Avogadro's law, one could perform the stoichiometric calculations with the given volume as both the pressure and temperature remain the same, that is:

Such 1:1 volume relationship equals the 1:1 molar relationship given in the chemical reaction in terms of their stoichiometric coefficients, therefore, the yielded volume of carbon dioxide is also 9.23m³
Best regards.
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Answer:
Fungi are a food source for animals and humans. This point do not apply on fungi.
Explanation:
Roles of fungi:
Penicillin and Cephalosporins are the antibiotics made by fungi. They are natural sources of antibiotics.
Fungi are eaten by animals examples are mushroom, agaricus and some animals even eat poisonous mushrooms.
Fungi destroy by releasing chemicals into the rock and they get iron this way and then deeply burrow the rocks and harming them.
Fungi acts as a decomposer to nourish the soil and improves vegetation.
Many infections are caused by fungus like ringworm infection, candida and Athlete's food are some examples.
Answer:
7. A) I, II
; 8. D) 2.34e9 kJ
Step-by-step explanation:
7. Combustion of ethanol
I. The negative sign for ΔH shows that the reaction is exothermic.
II. The enthalpy change would be different if gaseous water were produced.
That's because it takes energy to convert liquid water to gaseous water, and this energy is included in the value of ΔH.
III. The reaction is a redox reaction, because
- Oxygen is reacting with a compound
- The oxidation number of C increases
- The oxidation number of O decreases.
IV. The products of the reaction occupy a smaller volume than the reactants, because 3 mol of gaseous reactant are forming 2 mol of gaseous product.
Therefore, only I and II are correct.
7. Hindenburg
Data:
V = 2.00 × 10⁸ L
p = 1.00 atm
T = 25.1 °C
ΔH = -286 kJ·mol⁻¹
Calculations:
(a) Convert temperature to kelvins
T = (25.1 + 273.15) K = 298.25 K
(b) Moles of hydrogen
Use the <em>Ideal Gas Law</em>:
pV = nRT
n = (pV)/(RT)
n = (1.00 × 2.00 × 10⁸)/(0.082 06 × 298.25) = 8.172 × 10⁶ mol
(c) Heat evolved
q = nΔH = 8.172 × 10⁶ × (-286) = -2.34 × 10⁹ kJ
The hydrogen in the Hindenburg released 2.34e9 kJ
.