The correct question is as follows: 0.500 moles of potassium oxide is dissolved in enough water to make 2.00 L of solution. Calculate the molarity of this solution (plz help!)
Answer: The molarity of this solution is 0.25 M.
Explanation:
Molarity is the number of moles of a substance divided by volume in liter.
As it is given that there are 0.5 moles of potassium oxide in 2.00 L of water so, the molarity of this solution is calculated as follows.

Thus, we can conclude that molarity of this solution is 0.25 M.
Explanation:
SADMEP
-2(bx-5) = 16 distribute
-2bx +10 = 16 subtracte
-10 -10
-2bx = 6
divide by -2x (on both sides)
b = -3x
Answer:
- The limiting reagent is N2O4
- 14,09g
Explanation:
- First, we adjust the reaction.
+
⇄
- Second, we assume that the participating moles are equal to the stoichiometric ratios because we do not know the amounts of the reagents.
We can determinate what is the limiting reagent comparing of product amounts which can be formed from each reactant.
Using
to form 


Using
to form 


The limiting reagent is N2O4, because can produce only 0, 783 mol of H2O.
This is the minimum measure can be formed of each product.
∴ 

Answer:
669 Liters
Explanation:
From the equation, it takes 3/2 as much hydrogen as ammonia gas
3/2 * 446 = 669 Liters of H2 gas