Answer:
<h2>The answer is 2.5 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
density = 0.5 g/cm³
1 mL = 1 cm³
5 mL = 5 cm³
volume = 5 cm³
The mass is
mass = 0.5 × 5
We have the final answer as
<h3>2.5 g</h3>
Hope this helps you
Answer:
In 1897, the British physicist J. J. Thomson (1856–1940) proved that atoms were not the most basic form of matter. He demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that cathode rays consist of charged particles (Figure 2.2.2 ). More important, by measuring the extent of the deflection of the cathode rays in magnetic or electric fields of various strengths, Thomson was able to calculate the mass-to-charge ratio of the particles. These particles were emitted by the negatively charged cathode and repelled by the negative terminal of an electric field. Because like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge; these particles are now called electrons. Most relevant to the field of chemistry, Thomson found that the mass-to-charge ratio of cathode rays is independent of the nature of the metal electrodes or the gas, which suggested that electrons were fundamental components of all atoms.
Explanation:
Explanation:
The given precipitation reaction will be as follows.

Here, AgCl is the precipitate which is formed.
It is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
It is given that volume is 1.14 L and molarity is 0.269 M. Therefore, calculate number of moles as follows.
Molarity = 
0.269 M = 
no. of moles = 0.306 mol
As molar mass of AgCl is 143.32 g/mol. Also, relation between number of moles and mass is as follows.
No. of moles = 
0.307 mol = 
mass = 43.99 g
Thus, we can conclude that mass of precipitate produced is 43.99 g.
Answer:
English language please give me a
Answer:
The most stable conformer would be the anti-conformer when the substituent methyl groups are farthest away from each other.
Explanation:
Isomers are chemical compounds with the same molecular formula but with different molecular structures.
Conformers are a special type of isomers that produce different structures when the substituents of a Carbon-Carbon single bond (C-C) are rotated.
In 2,3 dimethyl butane, the substituent methyl groups are located around the second and third Carbon to Carbon single bond.
To achieve a stable configuration, the methyl group substituents need to be as far apart as possible (that is, in an anti-position) to minimise repulsion.
The closer the methyl groups are to each other, the more they repel each other and the more unstable the conformer becomes.