Answer:
Explanation:
Electric field E = 4 x 10⁷ V / m
Dielectric constant k = 24
capacitance of capacitor
C = kε₀ A / d
d = plate separation
A = plate area
C = .89 x 10⁻⁶
V / d = electric field
for minimum d , electric field will be maximum
V / d = 4 x 10⁷
1930 / d = 4 x 10⁷
d = 1930 / 4 x 10⁷
d = 482.5 x 10⁻⁷ m
= 48.25 x 10⁻⁶ m
C = kε₀ A / d
.89 x 10⁻⁶ = 24 ε₀ A / d
A = .89 x 10⁻⁶ X d / 24 ε₀
A = .89 x 10⁻⁶ X 48.25 x 10⁻⁶ / 24 x 8.85 x 10⁻¹²
= 42.9 / 212.4
= .2019 m²
Answer:
Two cars of equal weight and braking ability are travelling along the same road but combined with other factors it could mean the difference between life.
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.
Answer:
<h2>Gravity :</h2><h3>the force that attracts a body towards the centre of the earth, or towards any other physical body having mass.</h3>
<h2>Solar day</h2><h3>A solar day is the time it takes for the Earth to rotate about its axis so that the Sun appears in the same position in the sky.</h3><h2> or</h2><h3>It is the time between successive meridian transits of the sun at a particular place.</h3>