1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
4 years ago
5

A horizontal spring is attached to a wall at one end and a mass at the other. The mass rests on a frictionless surface. You pull

the mass, stretching the spring beyond the equilibrium position a distance A, and release it from rest. The mass then begins to oscillate in simple harmonic motion with amplitude A. During one period, the mass spends part of the time in regions where the magnitude of its displacement from equilibrium is greater than (0.30)A— that is, when its position is between −A and (−0.30)A, and when its position is between (0.30)A and A. What total percentage of the period does the mass lie in these regions?
Physics
1 answer:
Kaylis [27]4 years ago
4 0

Answer:

 Δt'/ T% = 90.3%

Explanation:

Simple harmonic movement is described by the expression

         x = A cos (wt)

we find the time for the two points of motion

x = - 0.3 A

        -0.3 A = A cos (w t₁)

         w t₁ = cos -1 (-0.3)

         

remember that angles are in radians

        w t₁ = 1.875 rad

x = 0.3 A

        0.3 A = A cos w t₂

        w t₂ = cos -1 (0.3)

         w t₂ = 1,266 rad

         

Now let's calculate the time of a complete period

x= -A

        w t₃ = cos⁻¹ (-1)

        w t₃ = π rad

this angle for the forward movement and the same time for the return movement in the oscillation to the same point, which is the definition of period

         T = 2 t₃

         T = 2π / w     s

now we can calculate the fraction of time in the given time interval

        Δt / T = (t₁ -t₂) / T

        Δt / T = (1,875 - 1,266) / 2pi

        Δt / T = 0.0969

 

This is the fraction for when the mass is from 0 to 0.3, for regions of oscillation of greater amplitude the fraction is

         Δt'/ T = 1 - 0.0969

         Δt '/ T = 0.903

         Δt'/ T% = 90.3%

You might be interested in
1. A car starting from rest accelerates uniformly at 3
amid [387]

The car's final speed in  m/s after the acceleration is 30.

<u />

<u>Given the following data:</u>

  • Initial velocity, U = 0 m/s (since the cars starts from rest)
  • Time, t = 10 seconds
  • Acceleration, a = 3 meter per seconds square.

To find the car's final speed in  m/s after the acceleration, we would use the first equation of motion;

Mathematically, the first equation of motion is given by the formula;

V = U + at\\\\V = 0 + 3(10)

<em>Final speed, V </em><em>=</em><em> 30 m/s</em>

Therefore, the car's final speed in  m/s after the acceleration is 30.

Read more: brainly.com/question/8898885

5 0
3 years ago
What is the control group
kolbaska11 [484]

Answer: the group in an experiment that doesn’t get treatment

Explanation:

8 0
2 years ago
CAN SOMEONE PLEASE HELP ME!!!!! IM BEGGING YOU!!
murzikaleks [220]
In my opinion the answer is B. Variation 
5 0
3 years ago
A 1.5m wire carries a 6 A current when a potential difference of 68 V is applied. What is the resistance of the wire?
ANTONII [103]

Answer:

11.3 \Omega

Explanation:

We can find the resistance of the wire by using Ohm's law:

V=RI

where

V is the voltage applied

R is the resistance

I is the current

In this problem, we know I = 6 A and V = 68 V, so we can re-arrange the equation to find the resistance of the wire:

R=\frac{V}{I}=\frac{68 V}{6 A}=11.3 \Omega

6 0
3 years ago
Needddd helppppppp!!!
yulyashka [42]

Answer:

2/9 times as strong.

Explanation:

From the question given above, the following assumptions were made:

Initial mass of 1st planet (M₁ ) = M

Initial mass of 2nd planet (m₁ ) = m

Initial distance apart (r₁) = r

Initial Force of attraction (F₁) = F

Final mass of 1st planet (M₂) = 2M

Final mass of 1st planet (m₂) = constant = m

Final distance apart (r₂) = 3r

Final force of attraction (F₂) =?

Next, we shall obtain an expression to determine the new force. This can be obtained as follow:

F = GMm / r²

Cross multiply

Fr² = GMm

Divide both side by Mn

G = Fr² / Mm

Since G is constant, then we have

F₁r₁² / M₁m₁ = F₂r₂² / M₂m₂

Finally, we shall determine the new force as follow:

Initial mass of 1st planet (M₁ ) = M

Initial mass of 2nd planet (m₁ ) = m

Initial distance apart (r₁) = r

Initial Force of attraction (F₁) = F

Final mass of 1st planet (M₂) = 2M

Final mass of 1st planet (m₂) = constant = m

Final distance apart (r₂) = 3r

Final force of attraction (F₂) =?

F₁r₁² / M₁m₁ = F₂r₂² / M₂m₂

Fr² / Mm = F₂ × (3r)² / 2M × m

Fr² / Mm = F₂ × 9r² / 2Mm

Cross multiply

Fr² × 2Mm = F₂ × 9r² × Mm

Divide both side by 9r² × Mm

F₂ = Fr² × 2Mm / 9r² × Mm

F₂ = F × 2 / 9

F₂ = 2/9 F

Thus, the new force is 2/9 times the original force i.e 2/9 times as strong.

4 0
3 years ago
Other questions:
  • The more particles a substance has at a given temperature, the more thermal energy it has.
    7·1 answer
  • Can you help me please?
    6·1 answer
  • Some strongly electric fish will stun prey by generating an electric current that runs
    12·1 answer
  • Light waves are electromagnetic waves that travel at 3.00 Light waves are electromagnetic waves that travel 108 m/s. The eye is
    6·1 answer
  • Two positive charged particles will ?
    5·2 answers
  • What are some facts about visual memory
    14·2 answers
  • At what constant rate of acceleration will a car starting from rest cover 18m in the first 3 seconds?
    9·1 answer
  • I shoot a bullet up at 270 m/s. How long does it fly for????
    9·1 answer
  • How polar bear can survive in the polar region<br>​
    15·1 answer
  • The amount of force needed to keep a 0.1 kg basketball moving at a constant speed of 6 m/s on frictionless ice is how much N?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!