Your answer will be B because sodium and chlorine and both elements and two elements combine to make a compound
<h2>
Hello!</h2>
The answer is:
The empirical formula is the option B. 
<h2>
Why?</h2>
The empirical formula of a compound is the simplest formula that can be written. On the opposite, the molecular formula involves a variant of the same compound, but it can be also simplified to an empirical formula.

We are looking for a formula that cannot be simplified by dividing the number of molecules/atoms that conforms the compound.
Let's discard option by option in order to find which formula is an empirical formula (cannot be simplified)
A. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

B. 
It's an empirical formula since it cannot be obtained by the multiplication of a whole number and the simplest formula. It's the simplest formula that we can find of the compound.
C. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

D. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

Hence, the empirical formula is the option B. 
Have a nice day!
Answer: a)
: Decomposition
b)
: double displacement
c)
: Synthesis (Combination)
d)
: redox
Explanation:
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.

A double displacement reaction is one in which exchange of ions take place.

Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.

Redox reaction is a type of chemical reaction in which oxidation and reduction takes place in one single reaction. The oxidation number of one element increases and the oxidation number of other element decreases.

Answer:
Intramolecular forces are the forces that hold atoms together within a molecule. Intermolecular forces are forces that exist between molecules.
Explanation:
Examples: Intermolecular forces are categorized into dipole-dipole forces, London dispersion forces and hydrogen bonding forces.
Intramolecular forces are categorized into covalent, ionic and metal bonds