The answer is b thank me later :)
Answer:
0.416 mol CaBr₂
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
83.1 g CaBr₂
<u>Step 2: Identify Conversions</u>
Molar Mass of Ca - 40.08 g/mol
Molar mass of Br - 79.90 g/mol
Molar Mass of CaBr₂ - 40.08 + 2(79.90) = 199.88 g/mol
<u>Step 3: Convert</u>
<u />
= 0.415749 mol CaBr₂
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.415749 mol CaBr₂ ≈ 0.416 mol CaBr₂
The chemical balanced equation for the given question is this:
2AL[NO3]3 + 3CaO = AL2O3 + 3Ca[NO3]2.
So, one of the product formed is AI2O3. The other product is Ca[NO3]2.
The reaction is a double replacement reaction.
The amount of force is what this is for