Answer:
i think its d im not sure
Explanation:
The decomposition time : 7.69 min ≈ 7.7 min
<h3>Further explanation</h3>
Given
rate constant : 0.029/min
a concentration of 0.050 mol L to a concentration of 0.040 mol L
Required
the decomposition time
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time
For first-order reaction :
[A]=[Ao]e^(-kt)
or
ln[A]=-kt+ln(A0)
Input the value :
ln(0.040)=-(0.029)t+ln(0.050)
-3.219 = -0.029t -2.996
-0.223 =-0.029t
t=7.69 minutes
<span>If 36 gm of potassium chlorate enter into the reaction, the total mass of the two products will still be 36 gm because if there is only one reactant, the mass of the compounds after the reaction will be same that reactant based on the law of conservation of matter.</span>
The reaction between K₂SO₄(aq) and SrI₂(aq) produces KI(aq) and SrSO₄(s) as products.
The reaction is
K₂SO₄(aq) + SrI₂(aq) → KI(aq)+ SrSO₄(s)
To balance the equation both side of the reaction should have same number of atoms in each element.
Right hand side of the reaction has 1 K, 1 I, 1 Sr, 1 S and 4 O atoms while 2 K, 2 I, 1 Sr,1 S and 4 O present in left hand side of the reaction.
Hence, number of I atoms and number of K atoms are not balanced.
To balance the K atoms we should add 2 before KI. Then I atoms will be 2 at the right hand side.
Hence, the balanced reaction equation is
K₂SO₄(aq) + SrI₂(aq) → 2KI(aq)+ SrSO₄(s)
Answer:
~1.5 g/cm3 and it does NOT float in water.
Explanation:
If you look at the graph, Object A weighs ~6 grams and is ~4 cm3 in volume
Density = Mass/Volume
So 6 grams/4 cm3 = 1.5 g/cm3
Water has a density of 1 g/cm3 and because Object A density is higher than that of water, it sinks.
:)