It follows that the reaction is spontaneous at high temperatures Option A.
<h3>What is ΔS ?</h3>
The term ΔS is referred to as the change in the entropy of the system. Now recall that entropy is defined as the degree of disorderliness in a system. If a system is highly disorderly then it means that it has a high entropy. Also, ΔH has to do with the heat change that accompanies a reaction.
We know that both the entropy and the heat change can both either be positive or negative. Now we know that the equation ΔG = ΔH - TΔS can be used to ascertain whether or not a reaction will be spontaneous. If the result is negative, then the reaction will be spontaneous.
As such, when then it follows that the reaction is spontaneous at high temperatures Option A.
Learn more about spontaneous reaction:brainly.com/question/13790391
#SPJ1
we are asked in this problem to determine the mass of a liquid in a small container. In order to determine the mass, we use an analytical balance for greater accuracy by first weighing the whole system (liquid+beaker). Then transfer the liquid to another container and completely dry the beaker (wash and dry). measure the weight of the beaker. The mass of the liquid is equal to the mass of the system minus the mass of the beaker.
Answer:
Metallic bonding is the type of chemical bonding that occurs between atoms of metals. In a metallic bond, atoms share their electrons in a way that allows them to form a “sea” of free electrons. This electron sea is responsible for the unique physical and electrical properties of metals.
Explanation:
I only know #8 and the raindrop would increase speed due to gravity.
Answer:
The artifact is 570 years old. That is, 5.7 × 10² years.
Explanation:
Radioactive decay follows first order reaction kinetics.
Let the initial activity for fresh Carbon-14 be A₀
And the activity at any other time be A
The rate of radioactive decay is given by
dA/dt = - KA
dA/A = - kdt
Integrating the left hand side from A₀ to A₀/2 and the right hand side from 0 to t(1/2) (where t(1/2) is the radioactive isotope's half life)
In [(A₀/2)/A₀] = - k t(1/2)
In (1/2) = - k t(1/2)
- In 2 = - k t(1/2)
k = (In 2)/t₍₁,₂₎
t(1/2) is given in the question to be 5.73 × 10³ years
k = (In 2)/5730 = 0.000121 /year
dA/A = - kdt
Integrating the left hand side from A₀ to A and the right hand side from 0 to t
In (A/A₀) = - kt
A/A₀ = e⁻ᵏᵗ
A = A₀ e⁻ᵏᵗ
A = 2.8 × 10³ Bq.
A₀ = 3.0 × 10³ Bq.
2.8 × 10³ = 3.0 × 10³ e⁻ᵏᵗ
0.9333 = e⁻ᵏᵗ
e⁻ᵏᵗ = 0.9333
-kt = In 0.9333
- kt = - 0.06899
t = 0.06899/0.000121 = 570.2 years = 5.7 × 10² years