The angle of the wedge is 30°.
Answer:
5.88 ft/s
Explanation:
a) The block will slide down due to it's weight.
initial velocity u= 0
final velocity, v
acceleration, a = g sin 30° = 32 ft/s²× sin 30° = 16 ft/s²
Sliding displacement, s = 3ft
Use third equation of motion:

substitute the values and solve for v

b) Use conservation of momentum:
Initial momentum of the system = 0
final momentum = (15) ( 9.8)+ (25)(v')
v' = 5.88 ft/s
Explanation:
F = MA
200 = 100 * A
A = 200/100
A = 2m/sec^2
<h3><em>hope </em><em>it </em><em>helps </em><em>you </em></h3>
Answer:
1. 37.8J
2. 18 Billion Joules, 18 Gigajoules
3. 9.81 Billion Joules, 9.81 Gigajoules
Explanation:
Use the formulas provided,
KE=(1/2)mv^2 and PE=mgh, noting that g=9.81
Answer:
F1= 588 N
F2= 784 N
Explanation:
Please see the attached file.
Answer:
10.4 m/s
Explanation:
The problem can be solved by using the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the diver in the problem, we have:
is the initial velocity (positive because it is upward)
is the acceleration of gravity (negative because it is downward)
By substituting t = 1.7 s, we find the velocity when the diver reaches the water:

And the negative sign means that the direction is downward: so, the speed is 10.4 m/s.