Explanation:
This how you do it..
Calculate Watt-hours Per Day. Device Wattage (watts) x Hours Used Per Day = Watt-hours (Wh) per Day. ...
Convert Watt-Hours to Kilowatts. Device Usage (Wh) / 1000 (Wh/kWh) = Device Usage in kWh. ...
Find Your Usage Over a Month.
Speed with which initially car is moving is 21 m/s
Reaction time = 0.50 s
distance traveled in the reaction time d = v t
d = 21 * 0.50 = 10.5 m
deceleration after this time = -10 m/s^2
now the distance traveled by the car after applying bakes



so total distance moved before it stop
d = 22.05 + 10.5 = 32.55 m
so the distance from deer is 35 - 32.55 = 2.45 m
now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop
so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m
again by kinematics



so maximum speed would be 22.1 m/s
The Nucleus contains Protons and Neutrons.
The Neutrons does not have a charge.
The Protons are positively charge.
Hence the charge on the Nucleus, would be the charge of the proton, which is positive.
Hence Nucleus is Positively Charged.
Answer:
V = 90.51 m/s
Explanation:
From the given information:
Initial speed (u) = 0
Distance (S) = 391 m
Acceleration (a) = 18.9 m/s²
Using the relation for the equation of motion:
v² - u² = 2as
v² - 0² = 2as
v² = 2as


v = 121.57 m/s
After the parachute opens:
The initial velocity = 121.57 m/ss
Distance S' = 332 m
Acceleration = -9.92 m/s²
How fast is the racer can be determined by using the relation:


V = 90.51 m/s