Answer with Explanation:
Let rest mass
at point P at distance x from center of the planet, along a line connecting the centers of planet and the moon.
Mass of moon=m
Distance between the center of moon and center of planet=D
Mass of planet=M
We are given that net force on an object will be zero
a.We have to derive an expression for x in terms of m, M and D.
We know that gravitational force=
Distance of P from moon=D-x
=Force applied on rest mass due to m
=Force on rest mass due to mas M
because net force is equal to 0.





Let 
Then, 




b.We have to find the ratio R of the mass of the mass of the planet to the mass of the moon when x=
Net force is zero




Hence, the ratio R of the mass of the planet to the mass of the moon=4:1
Answer:
B. physics and engineering
Explanation:
Biomechanics is the study of mechanical laws and living organisms. Hence, it comprises of the interrelationships between physics and engineering.
Answer:

Explanation:
It is given that,
Mass of the baseball, m = 0.14 kg
It is dropped form a height of 1.8 m above the ground. Let u is the velocity when it hits the ground. Using the conservation of energy as :

h = 1.8 m

u = 5.93 m/s
Let v is the speed of the ball when it rebounds. Again using the conservation of energy to find it :

h' = 1.4 m

v = -5.23 m/s
The change in the momentum of the ball is given by :



So, the change in the ball's momentum occurs when the ball hits the ground is 1.56 kg-m/s. Hence, this is the required solution.
Answer:
= 351.84 J
Explanation:
Using the conservation of energy K:

so:

where m is the mass, v the initial velocity,
is the kinetic energy of the mass as it clears the fence, g the gravity and h the altitude.
Then, replacing values, we get:

solving for
:
= 351.84 J