Molar mass
C₂H₄O₂ = 60.0 g/mol
n = mass / molar mass
3.00 = mass / 60.0
m = 3.00 * 60.0
m = 180 g of <span>C₂H₄O₂
hope this helps!</span>
Answer:
3 H1 NMR signals
Explanation:
NB: kindly check the diagram of the chemical compound in the attached picture.
This particular Question is based on the part of chemistry which is known as spectroscopy. Spectroscopy is used in the Determination or in identifying chemical compounds. H'NMR works on the principle of nuclear magnetic resonance.
In order to solve this question, one has to count the number of hydrogen in unique location. The diagram in the attached show how hydrogen is been counted.
The numbers of signals is the number of different chemical environments in which hydrogen atoms are located.
NB: signals is also the same as peak in H'NMR.
Hence, the number of H1 NMR signals in this chemical compound is 3.
Fluorine needs one electron to fill its orbital shell. It needs 8 valence electrons
Answer:
Gases are compressible, meaning that when put under high pressure, the particles are forced closer to one another. This decreases the amount of empty space and reduces the volume of the gas. Gas volume is also affected by temperature. When a gas is heated, its molecules move faster and the gas expands.
The mass number is the summation of number of proton and neutron present in a nucleus of an atom. For the neutral atom the number of positive charge (number of proton) must be equal to the number of electrons. The number of electrons present in an atom is the atomic number of the atom. The standard way to express the mass number (a) and atomic number (m) of a atom (say X) is
. Now for silicon number of electron or atomic number is 14. And the mass number (a) given 29. Thus the expression nucleus of silicon will be 