The volume (in liters) that the gas will occupy if the pressure is increased to 13.5 atm and the temperature is decreased to 15 °C is 15 L
From the question given above, the following data were obtained:
Initial pressure (P₁) = 8.5 atm
Initial volume (V₁) = 24 L
Initial temperature (T₁) = 25 °C = 25 + 273 = 298 K
Final pressure (P₂) = 13.5 atm
Final temperature (T₂) = 15 °C = 15 + 273 = 288 K
<h3>Final volume (V₂) =? </h3>
- The final volume of the gas can be obtained by using the combined gas equation as illustrated below:

Cross multiply
298 × 13.5 × V₂ = 204 × 288
4023 × V₂ = 58752
Divide both side by 4023

<h3>V₂ = 15 L </h3>
Therefore, the final volume of the gas is 15 L
Learn more: brainly.com/question/25547148
Answer:
The answer is A. Chemical
Explanation:
Have a nice day
Answer:
F=ma
Explanation:
F=m×a
according to that F÷m=a and also F ÷a=m
Answer:
rate= k[A]²[B]²[C]
Explanation:
When concentration of A is increased two times ,keeping other's concentration constant , rate of reaction becomes 4 times .
So rate is proportional to [A]²
When concentration of B is increased two times , keeping other's concentration constant,rate of reaction becomes 4 times.
So rate is proportional to [B]²
When concentration of C is increased two times , keeping other's concentration constant, rate of reaction becomes 2 times.
So rate is proportional to [C]
So rate= k[A]²[B]²[C]
<u>Answer:</u> The standard enthalpy change of the reaction is coming out to be -16.3 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_f_{(MgCl_2(s))})+(2\times \Delta H_f_{(H_2O(g))})]-[(1\times \Delta H_f_{(Mg(OH)_2(s))})+(2\times \Delta H_f_{(HCl(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28MgCl_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Mg%28OH%29_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCl%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-641.8))+(2\times (-241.8))]-[(1\times (-924.5))+(2\times (-92.30))]\\\\\Delta H_{rxn}=-16.3kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-641.8%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%281%5Ctimes%20%28-924.5%29%29%2B%282%5Ctimes%20%28-92.30%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-16.3kJ)
Hence, the standard enthalpy change of the reaction is coming out to be -16.3 kJ