Answer: Molarity increases
Explanation:
Molarity, also known as concentration in moles/dm3 or g/dm3, is calculated by dividing the amount of solute dissolved by the volume of solvent. So, Molarity (c) = amount of solute (n) / volume (v)
i.e c = n/v
Hence, molarity is directly proportional to the amount of solute dissolved, and inversely proportional to the volume of solvent.
Thus, at same volume, any increase in solute amount increases molarity while a decrease will also decreases molarity.
A) sodium fluoride
B) rubidium oxide
C) boron trichloride
D) dihydrogen selenide
E) tetraphosphate hexoxide
F) iodine trichloride
Answer
is: 1) ccl4, kb = 29.9°c/m, carbon tetrachloride has the greatest boiling point
elevation.
The boiling point elevation is directly
proportional to the molality of the solution according to the
equation: ΔTb = Kb · b.
<span>
ΔTb - the boiling point
elevation.
Kb - the ebullioscopic
constant.
b - molality of the solution.
So the highest boiling poing elevation will be for solution with highest ebullioscopic constant because molality is the same.</span>
Answer:
c
Explanation:
because the ion are Mobil which mean they are free not combined and carry a charge but when they are combined/ fixed in position they can't carry a charge so therefore can't conduct electricity :)
Answer:
The 99.68% of the aspirin is present in the neutral form
Explanation:
Aspirin, Acetylsalicylic acid, is a weak acid with pKa = 3.5
Using Henderson-Hasselbalch equation:
pH = pKa + log [A⁻] / [HA]
<em>Where [A⁻] is the ionized form and HA the neutral form of the acid</em>
<em />
Replacing with a pH of stomach of 1.0:
1.0 = 3.5 + log [A⁻] / [HA]
-2.5 = log [A⁻] / [HA]
3.16x10⁻³ = [A⁻] / [HA] <em>(1)</em>
<em />
A 100% of aspirin is = [A⁻] + [HA]
100 = [A⁻] + [HA] <em>(2)</em>
<em></em>
Replacing (2) in (1)
3.16x10⁻³ = 100 - [HA] / [HA]
3.16x10⁻³[HA] = 100 - [HA]
1.00316 [HA] = 100
[HA] = 99.68%
<h3>The 99.68% of the aspirin is present in the neutral form</h3>