Answer: Massive
Explanation: There are many galaxies out in the universe and it's possible they go on indefinitely. Out of all of these, our solar system is very very tiny. As an analogy, our universe would be like an atom which are the the smallest units of matter. There are many other galaxies that we just haven't been able to discover but they are there.
3.47 x
atoms of gold have mass of 113.44 grams.
Explanation:
Data given:
number of atoms of gold = 3.47 x
mass of the gold in given number of atoms = ?
atomic mass of gold =196.96 grams/mole
Avagadro's number = 6.022 X 
from the relation,
1 mole of element contains 6.022 x
atoms.
so no of moles of gold given = 
0.57 moles of gold.
from the relation:
number of moles = 
rearranging the equation,
mass = number of moles x atomic mass
mass = 0.57 x 196.96
mass = 113.44 grams
thus, 3.47 x
atoms of gold have mass of 113.44 grams
Which of these is an isoelectronic series? 1) na+, k+, rb+, cs+ 2) k+, ca2+, or, s2– 3) na+, mg2+, s2–, cl– 4) li, be, b, c 5) n
ss7ja [257]
An isoelectronic series is where all of the ions listed have the same number of electrons in their atoms. When an atom has net charge of zero or neutral, it has equal number of protons and electrons. Hence, it means that the atomic number = no. of protons = no. of electrons. If these atoms become ions, they gain a net charge of + or -. Positive ions are cations. This means that they readily GIVE UP electrons, whereas negative ions (anions) readily ACCEPT electrons. So, to know which of these are isoelectronic, let's establish first the number of electron in a neutral atom from the periodic table:
Na=11; K=19; Rb=37; Cs = 55; Ca=20; S=16; Mg=12; Li=3; Be=4; B=5; C=6
A. Na⁺: 11-1 = 10 electrons
K⁺: 19 - 1 = 18 electrons
Rb⁺: 37-1 = 36 electrons
B. K⁺: 19 - 1 = 18 electrons
Ca²⁺: 20 - 2 = 18 electrons
S²⁻: 16 +2 = 18 electrons
C. Na⁺: 11-1 = 10 electrons
Mg²⁺: 12 - 2 = 10 electrons
S²⁻: 16 +2 = 18 electrons
D. Li=3 electrons
Be=4 electrons
B=5 electrons
C=6 electrons
The answer is letter B.
Given:
0.607 mol of the weak acid
0.609 naa
2.00 liters of solution
The solution for finding the ph of a buffer:
[HA] = 0.607 / 2.00 = 0.3035 M
[A-]= 0.609/ 2.00 = 0.3045 M
pKa = 6.25
pH = 6.25 + log 0.3045/ 0.3035 = 6.25 is the ph buffer prepared.
Answer:
Covalent compounds are held by intermolecular forces while network solids are held by strong bonds in unit cells which are closely packed together.
Explanation:
Covalent compound molecules are held by vanderwaals forces which are relatively weak but strong enough to hold some covalent molecules together in the solid state. However, network solids contain atom to atom covalent bonds arranged in an orderly manner and regular repeating unit cells to form a rigid three dimensional network solid.