Answer:
The answer is below
Explanation:
The separation technique is used for separating immiscible liquids.
When separating, the stopper has to be removed when draining the lower layer so as to prevent a vacuum. If vacuum is allowed, the draining rate will reduce and stop.
The liquid should be mixed by shaking the funnel and then opening the stopcock so as the vent out gases.
When near interface between the layers, you should set your eye level so that you do not drain up to the second layer.
After completely draining the first layer, the second layer should be collected in a new flask.
After mixing the solutions in a separatory funnel, the stopper should be removed and the liquid should be mixed thoroughly and the layers allowed to separate. When you get close to the interface between the layers, get eye level with the funnel and slow the draining until the first layer is collected. Switch to a new flask to collect the second layer.
Answer:
1.88 × 10²² Molecules of CO
Explanation:
At STP for an ideal gas,
Volume = Mole × 22.4 L/mol
Or,
Mole = Volume / 22.4 L/mol
Mole = 0.7 L / 22.4 L/mol
Mole = 0.03125 moles
Now,
No. of Molecules = Moles × 6.022 × 10²³ Molecules/mol
No. of Molecules = 0.03125 × 6.022 × 10²³ Molecules/mol
No. of Molecules = 1.88 × 10²² Molecules of CO
Answer:
0.00370 g
Explanation:
From the given information:
To determine the amount of acid remaining using the formula:
where;
v_1 = volume of organic solvent = 20-mL
n = numbers of extractions = 4
v_2 = actual volume of water = 100-mL
k_d = distribution coefficient = 10
∴




Thus, the final amount of acid left in the water = 0.012345 * 0.30
= 0.00370 g
The option which accurately defines kinetic energy from the choices above is:
the energy an object has because of its motion
The correct answer choice is option c
In order words, kinetic energy is that type of energy which a body or an object posess due to its relative motion.
<h3>What is energy?</h3>
Energy can simply be defined as the capacity of doing work.
Energy is a derived quantity; meaning that it is obtained from the combination of fundamental quantities.
The unit of energy joules.
Other examples of derived quantities just like energy too are:
- Volume
- Speed
- Acceleration
- Density.
- Upthrust
- Momentum
- Momentum
- Power
- Pressure
- Force
Below are some few forms of energy; these are:
- Kinetic energy
- Potential energy
- Mechanical energy
- Solar energy
- Light energy
- Chemical energy
So therefore, the option which accurately defines kinetic energy from the choices above is:
the energy an object has because of its motion
Learn more about energy:
brainly.com/question/25959744
#SPJ1
Answer:
201.9
Explanation:
when you divided 760 with 400 yo get 19.0 the add it with 200 you get that answer