Answer:
New temperature T2 = 707.5 K (Approx.)
Explanation:
Given:
Old pressure P1 = 2 atm
Old temperature T1 = 283 K
New Pressure P2 = 5 atm
Find:
New temperature T2
Computation:
Using Gay-Lussac law;
P1 / T1 = P2 / T2
So,
2 / 283 = 5 / T2
New temperature T2 = 707.5 K (Approx.)
Your Question: {How many objects are in a mole?}
Helpful Knowledge: (We Know the amount in an object: 12g or C^12)
{A number of objects that are in a mole of objects?}
Well for the question it is pretty easy to answer because a number of objects in One mole would equal 6.02 × 10²³
Which 6.02 × 10²³ is an Avogadro's Number.
So it depends on how many objects you have.
So for every object you have, One mole would equal 6.02 × 10²³. Or 62,000,000,000,000,0000,000,000. Big Number am I right. So that's why we just use 6.02 × 10²³.
Anywho, your answer would be 6.02 x 10²³ x n.
N would equal the number of objects you're calculating.
Final Answer: 6.02 x 10²³ x (n) = (Your Answer)
Hope this helps! Have a great day. If you need anything else, feel free to hope right in my inbox. Or comment below. ↓
Answer:
–2.23 L
Explanation:
We'll begin by calculating the final volume. This can be obtained as follow:
Initial pressure (P₁) = 1.03 atm
Initial volume (V₁) = 3.62 L
Final pressure (P₂) = 2.68 atm
Final volume (V₂) =?
P₁V₁ = P₂V₂
1.03 × 3.62 = 2.68 × V₂
3.7286 = 2.68 × V₂
Divide both side by 2.68
V₂ = 3.7286 / 2.68
V₂ = 1.39 L
Finally, we shall determine the change in volume. This can be obtained as follow:
Initial volume (V₁) = 3.62 L
Final volume (V₂) = 1.39 L
Change in volume (ΔV) =?
ΔV = V₂ – V₁
ΔV = 1.39 – 3.62
ΔV = –2.23 L
Thus, the change in the volume of her lung is –2.23 L.
NOTE: The negative sign indicate that the volume of her lung reduced as she goes below the surface!
Answer:
The O is being oxidized, but at the same time, is being reducted.
Explanation:
H₂O₂(l) + ClO₂(aq) → ClO₂(aq) + O₂(g)
In this reaction, we have 4 compounds:
Hydrogen peroxide
Chlorine dioxide (twice)
Oxygen
In both dioxide, the Cl acts with +4 in oxidation state; the oxygen acts with -2.
Oxgen in ground state has 0, as oxidation number.
In peroxide, the H acts with +1 but the oxygen acts with -1.
Peroxide is making the oxidation number from the O in the ClO₂, to decrease (reduction) and to increase in the O, at the ground state.
Hydrogen peroxide is a good reducing and oxidizing agent at the same time.