1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
14

an ideal gas system undergoes an adiabatic process in which it expands and does 20 J of work on its environment. how much energy

is transferred into the system as heat
Physics
1 answer:
ehidna [41]3 years ago
8 0

Answer:

Zero.

Explanation:

An adiabatic process is one in which there is no exchange of heat energy. Therefore, in an adiabatic process, heat is neither added to the system not it is removed from the system.

The work done by the gas on the environment is 20 J. This energy is equal to the change in internal energy for an adiabatic process.

Therefore, for an ideal gas to undergo an adiabatic process in which it expands and does 20 J of work on its environment, the heat exchange is zero.

You might be interested in
What is the order of magnitude of the distance of Sun to nearest star in meters?
neonofarm [45]

Answer:

Approximating the Milky Way as a disk and using the density in the solar neighborhood, there are about 100 billion stars in the Milky Way.

Explanation:

Since we are making an order of magnitude estimate, we will make a series of simplifying assumptions to get an answer that is roughly right.

Let's model the Milky Way galaxy as a disk.

The volume of a disk is:

V

=

π

⋅

r

2

⋅

h

Plugging in our numbers (and assuming that

π

≈

3

)

V

=

π

⋅

(

10

21

m

)

2

⋅

(

10

19

m

)

V

=

3

×

10

61

m

3

Is the approximate volume of the Milky Way.

Now, all we need to do is find how many stars per cubic meter (

ρ

) are in the Milky Way and we can find the total number of stars.

Let's look at the neighborhood around the Sun. We know that in a sphere with a radius of

4

×

10

16

m there is exactly one star (the Sun), after that you hit other stars. We can use that to estimate a rough density for the Milky Way.

ρ

=

n

V

Using the volume of a sphere

V

=

4

3

π

r

3

ρ

=

1

4

3

π

(

4

×

10

16

m

)

3

ρ

=

1

256

10

−

48

stars /

m

3

Going back to the density equation:

ρ

=

n

V

n

=

ρ

V

Plugging in the density of the solar neighborhood and the volume of the Milky Way:

n

=

(

1

256

10

−

48

m

−

3

)

⋅

(

3

×

10

61

m

3

)

n

=

3

256

10

13

n

=

1

×

10

11

stars (or 100 billion stars)

Is this reasonable? Other estimates say that there are are 100-400 billion stars in the Milky Way. This is exactly what we found.

4 0
2 years ago
Read 2 more answers
The mole fraction of oxygen in dry air near sea level is 0.20948. The concentration of
BlackZzzverrR [31]
C,d,or e you can use the process of elimination to decide...
3 0
3 years ago
Read 2 more answers
पत्र- अपने क्षेत्र की सड़कों की बुरी दशा की जानकारी देते हुए और उन्हें ठीक कराने की प्रार्थना करते हुए नगर निगम अधिकारी को पत्र
Ksivusya [100]

Answer:

पत्र- अपने क्षेत्र की सड़कों की बुरी दशा की जानकारी देते हुए और उन्हें ठीक कराने की प्रार्थना करते हुए नगर निगम अधिकारी को पत्र लिखिए |

5 0
3 years ago
Two protons in an atomic nucleus are typically separated by a distance of 2 ✕ 10-15 m. The electric repulsion force between the
castortr0y [4]

Answer:

The magnitude of the electric force between the to protons will be 57.536 N.

Explanation:

We can use Coulomb's law to find out the force, in scalar form, will be:

F \ = \ \frac{1}{4 \pi \epsilon_0 } \frac{q_1 q_2}{d^2}.

Now, making the substitutions

d \ = \ 2.00 * 10 ^{-15} \ m,

q_1 = q_2 = 1.60 * 10 ^ {-19} \ C,

\frac{1}{4\pi\epsilon_0}=8.99 * 10^9 \frac{Nm^2}{C^2},

we can find:

F \ = \ 8.99 * 10^9 \frac{Nm^2}{C^2} \frac{(1.60 * 10 ^ {-19} \ C)^2}{(2.00 * 10 ^{-15} \ m)^2}.

F \ = 57.536 N.

Not so big for everyday life, but enormous for subatomic particles.

4 0
3 years ago
Read 2 more answers
Describe the three major layers of the earth including temperature thickness of chemical composition
Elena L [17]
The three main layers are the core, the mantle, and the crust. The core is divided into two parts, the liquid outer core, and the solid inner core. Together it is 3450 km thick. The mantle is 2100 km thick, and the crust is 35-70 km thick. Hope I helped!
3 0
3 years ago
Other questions:
  • What influences the strength of an electric field?
    8·1 answer
  • How to draw the ray diagram? Pls answer
    10·1 answer
  • When a 4.32 kg object is hung vertically on a certain light spring that obeys Hooke's Law, the spring stretches 2.92 cm.
    12·1 answer
  • Using a simple machine, a student is able to lift a 500N weight by applying only 100N.
    13·1 answer
  • Discuss the relationship between acceleration and velocity. Are these scalar or vector quantities?
    10·1 answer
  • (02.09 MC) An object starts at rest. Its acceleration over 30 seconds is shown in the graph below: An acceleration versus time g
    8·2 answers
  • Heyyyyyy please answer all of the questions
    6·1 answer
  • A 600 kg rocket sled can be accelerated at a constant rate from rest to 1400 km/h in 2.1 s. What is the magnitude of the require
    5·1 answer
  • How are dams made do they just freeze time?
    7·2 answers
  • The phrase change in which a substance changes from a gas directly to a solid is
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!