Answer:
-0.1767°C (Option A)
Explanation:
Let's apply the colligative property of freezing point depression.
ΔT = Kf . m. i
i = Van't Hoff factot (number of ions dissolved). Glucose is non electrolytic so i = 1
m = molality (mol of solute / 1kg of solvent)
We have this data → 0.095 m
Kf is the freezing-point-depression constantm 1.86 °C/m, for water
ΔT = T° frezzing pure solvent - T° freezing solution
(0° - T° freezing solution) = 1.86 °C/m . 0.095 m . 1
T° freezing solution = - 1.86 °C/m . 0.095 m . 1 → -0.1767°C
Answer is (3) both mass number and atomic number.
The notation is ₅₅¹³⁷Cs. The Cs represents the chemical symbol of Caesium element. The subscript number at the left hand side of the symbol indicates the atomic number. Hence, atomic number of Cs is 55. The superscript number at the left hand side of the symbol shows the mass number. Hence, the mass number of the Cs is 137.
Answer:
The correct answer is B. exogenous
Explanation:
Let us try to describe exogenous and endogenous variables an exogenous variable value is influenced only by factors outside a model or system and is forced onto the model, while a change in an exogenous variable is known as an exogenous change. Also an endogenous variable is one whose value is influenced only by the system or model under study.
<span>CH</span>₃<span>CH</span>₂<span>COOH + H</span>₂<span>O </span>↔ <span> CH</span>₃<span>CH</span>₂<span>COO</span>⁻<span> + H</span>₃<span>O</span>⁺<span>
</span>
pH = 0.5 pKa + 0.5 pCa
0.5 pCa = pH - 0.5 pKa
= 4.2 - (0.5 * (-log 1.34 x 10⁻⁵)) = 1.76
pCa = 3.53
Ca = antilog - 3.52 = 3 x 10⁻⁴
where Ca is the acid concentration