1. Solids
- definite volume & shape
- little energy
-vibrate in place
- very incompressible
2. Liquids
- held together yet can still flow
Answer:

Explanation:
In this case, we can start with the reaction:

If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:


Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):


The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:

Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol
= 48 g
(therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:

I hope it helps!
The number of moles in 32.5g of aluminum chloride is approximately 0.250 moles.
Answer is: adenosine triphosphate.
ATP is made of three components: the triphosphate (P), the sugar ribose and a nitrogenous base (adenine).
ATP is short for adenosine triphosphate
Adenosine triphosphate converts to either the adenosine diphosphate (ADP) or adenosine monophosphate (AMP), in this process energy is released.