The charge density of the sheet is 1.384×10⁻⁷C/m².
Charge density is defined as the charge per unit area.
The sheet is a square of length l=17 cm.
Calculate the area A of the sheet .

The charge Q on the sheet is

The charge density σ is given by,

Substitute 4×10⁻⁹C for Q and 0.0289 m² for A.

Thus, the charge density of the sheet is <u>1.384×10⁻⁷C/m².</u>
Explanation:
The Net Force of the object can be written by:
Fnet = ma
where m is the mass of the object in <em>kg</em>
a is the acceleration of the object in <em>m/s^2</em>
Hence by applying the formula we get:
Fnet = (2.0)(3.0)
= 6N
We also know that Net force is also the sum of all forces acting on an object. In this case Friction and the Pushing Force is acting on the object. Hence we can write that:
Fnet = Pushing Force + (-Friction)
6N = 6N - Friction
Friction = 0N
Hence the<u> </u><u>f</u><u>orce of friction is 0N.</u>
Answer:
Given the area A of a flat surface and the magnetic flux through the surface
it is possible to calculate the magnitude
.
Explanation:
The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux
is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (
). So 1 Wb=1 T.m².
For a flat surface S of area A in a uniform magnetic field B, with
being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

We are told the values of
and B, then we can calculate the magnitude

Answer:
The answer is given below
Explanation:
u is the initial velocity, v is the final velocity. Given that:

a)
The final velocity of cart 1 after collision is given as:

The final velocity of cart 2 after collision is given as:

b) Using the law of conservation of energy:

Answer: A if thats not right its C
Explanation: