Answer:
0.37 m/s to the left
Explanation:
Momentum is conserved. Initial momentum = final momentum.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Initially, both the fisherman/boat and the package are at rest.
0 = m₁ v₁ + m₂ v₂
Plugging in values and solving:
0 = (82 kg + 112 kg) v + (15 kg) (4.8 m/s)
v = -0.37 m/s
The boat's velocity is 0.37 m/s to the left.
To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by
Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that
Therefore,
Re-arrange to find x,
The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
Potential and kinetic energy are the two types of energy, but they do get separated into subgroups, for which I do not know. Hope that helps.
Because force always has a direction, it always works towards or against something.
you might know that force,
is rate of change of momentum i.e
force = m (v-u)/t
= (mv - mu )/ t
as we know momentum is a vector quantity so, the rate of change of momentum i.e Force would also be a vector quantity.
momentum = mass × velocity
velocity has a direction so,
momentum has also got a direction.
so, momentum is also a vector quantity.